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Jean Cardinal∗§ Sébastien Collette†§ Stefan Langerman‡§

Abstract

The region counting distances, introduced by Demaine,
Iacono and Langerman [5], associate to any pair of
points p, q the number of items of a dataset S contained
in a region R(p, q) surrounding p, q. We define region
counting disks and circles, and study the complexity of
these objects. In particular, we prove that for some
wide class of regions R(p, q), the complexity of a region
counting circle of radius k is either at least as large as
the complexity of the k-level in an arrangement of lines,
or is linear in |S|. We give a complete characterization
of regions falling into one of these two cases. Algo-
rithms to compute ε-approximations of region counting
distances and approximations of region counting circles
are presented.

1 Introduction

Region counting distances, introduced by Demaine et
al. [5], are distance functions parameterized by a finite
point set, in which the distance between any two points
is the count of items inside a region surrounding those
points. The original aim was to define a distance gener-
alizing the rank difference to the plane to allow efficient
point searching [5] and point location [9].

In [2], the region counting distances were used as a
characterization of the local density of vertices in Eu-
clidean graphs. This allowed to define the local diame-
ter, which is the upper bound on the size of the shortest
path between any pair of vertices expressed as a func-
tion of the local density, and thus as a function of the
region counting distance between that pair. More gen-
erally, the local properties were defined as properties
expressed as a function of those distances.

Region Counting Graphs, a new class of proximity
graphs based on the region counting distances were de-
fined in [3]. Those are Euclidean graphs in which there
is an edge between a pair of vertices if the region count-
ing distance between them is less than some threshold.
By carefully selecting the region used to compute the
region counting distance, the proximity graph defined
in that manner can be guaranteed to have a set of de-
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sirable properties such as connectivity, planarity or tri-
angle freeness.

Although region counting distances have been suc-
cessfully used in these contexts, their study is incom-
plete. For instance, the practical computation of the
distance has not yet been studied. The complexity of
simple objects defined with that distance, such as disks
or circles of a given radius, bisectors, or Voronoi dia-
grams, has not been analyzed.

This article proposes a first study of disks and circles
defined using the region counting distance. This re-
search might prove useful in many contexts. For exam-
ple, efficient algorithms for computing those disks could
be used to speed up the constuction of proximate point
location data structures described in [9]. Furthermore,
in the proximate point searching structure [5], given a
current item p in the structure we can reach any other
item q in a time logarithmic with respect to their region
counting distance. A region counting disk of radius k
centered in p gives all the items which can be reached
in O(log k) time. This can be of great interest if there
are real time constraints, as it gives a bound on what
can be done without missing the deadline.

In most cases, a description of the disk itself cannot
be stored efficiently for each item in the data structure
as its space complexity grows at least linearly with n,
but we show how to construct approximations of region
counting disks.

In Section 2, we define region counting distances and
state some of their properties. In Section 3, region
counting circles are introduced and described as levels
in arrangements of curves. The model used to describe
regions is presented in Section 4. Section 5 contains
our analysis of the complexity of region counting disks
which is linked to the number of k-sets, a well-studied
problem in combinatorial geometry. In Section 6 we de-
scribe approximation algorithms so as to compute the
region counting distance in a time independent in n with
bounds on the approximation error; and to compute
constant size approximations of region counting disks.
Due to lack of space, all proofs are omitted.

2 Region Counting Distances

The region counting distances are defined, for every pair
of points, as the number of items in their neighborhood
defined by an influence region. In this section, we in-
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Figure 1: A region and its corresponding inverse region.

troduce the definitions needed to study those distances.
In what follows, we consider the Real RAM model of
computation.

An influence region R is a function mapping a pair
(p, q) of points in R

2 to a subset R(p, q) of R
2 such that

inclusion in R(p, q) can be computed in O(1) time.
An anchored region R is an influence region parame-

terized by a triple (a, b, D), where a and b are points in
R

2 and D is a subset of R
2 such that inclusion in D can

be computed in O(1) time. The set R(p, q) is the subset
of R

2 obtained by translating, rotating and uniformly
scaling D so that a maps to p and b maps to q.

The distance is then the cardinality of the intersection
of the dataset and the neighborhood: a region counting
distance [5] dR = dS

R(p, q) parameterized by a finite
point set S ⊆ R

2 and an influence region R, is defined
by dR(p, q) = |S ∩ R(p, q)|.

We restrict our study to distances using anchored
star-shaped regions with p and q inside the region
R(p, q). These restrictions are motivated by the fol-
lowing lemma.

Lemma 1 • A region counting distance is invariant
under rotations and uniform scalings if and only if
it can be defined by an anchored region.

• A region counting distance is monotone if and only
if its influence region is star-shaped.

3 Region Counting Disks

The region counting disk of radius k centered in x, de-
noted by Dk

x,R, is the locus of the points of R
2 at a

region counting distance less than or equal to k of the
center x using the anchored region R(p, q). Formally,
Dk

x,R = {y ∈ R
2|dR(x, y) ≤ k}.

The boundary of a region R, denoted by ∂R, is {x ∈
R

2|∀ε > 0 ∈ R, ∃u ∈ R, v 6∈ R : d2(x, u) < ε, d2(x, v) <
ε}. The region counting circle of radius k centered in x
is Ck

x,R = ∂Dk
x,R.

We define the inverse region IR(p, q) corresponding to
the region R(p, q) to be IR(p, q) = {x ∈ R

2|q 6∈ R(p, x)}.
It is the region counting disk of radius 0 and centered

at p with a singleton q as dataset, as shown on Figure 1.
That region is an influence region parameterized by p
and q, and is an anchored region if R itself is an anchored
region. The inverse curve is the boundary of the inverse
region.

We now recall the standard notion of level in an ar-
rangement of curves : given a fixed finite set L of x-
monotone curves in the plane, the level of a point x ∈ R

2

is the number of curves of L lying strictly below x.
Given a fixed finite set L of star-shaped curves with

p in their kernel, the polar level of a point x ∈ R
2 is the

number of curves crossed by the segment px.
An edge in an arrangement of curves is a maximal

curve segment not intersected by any other curve. The
level of an edge is the level of the points on that edge.
The kth (polar-)level in an arrangement of a set of
curves L is the set of all edges with (polar-)level exactly
k.

Lemma 2 The region counting circle Ck
x,R is the kth

polar level in the arrangement of inverse curves corre-
sponding to the dataset.

Theorem 3 Given two anchored regions R and R′, and
their corresponding inverse regions IR and IR′ , the in-
verse region IR∪R′ of the anchored region R ∪ R′ is
IR ∩ IR′ and the inverse region IR∩R′ of the anchored
region R ∩ R′ is IR ∪ IR′ .

4 Model

As we want to bound the complexity of the region count-
ing circles, and that this complexity depends on the
considered region, we describe in this section the model
used to encode the regions.

In our model, a region is defined by an associated
function fR(p,q)(x) = fR(p, q, x) : R

2 × R
2 × R

2 → R,
such that R(p, q) = {x ∈ R

2|fR(p,q)(x) ≥ 0}, and
∂R(p, q) = {x ∈ R

2|fR(p,q)(x) = 0}. The corresponding
inverse region is IR(p,q) = {x ∈ R

2|fR(p,x)(q) < 0}, and
we can also define the function associated with IR(p,q)

by fIR(p,q)(x) = −fR(p,x)(q).
We restrict fR(p,q)(x) to be a polynomial function of

bounded degree. We also consider regions and inverse
regions resulting of boolean operations on two or more
(possibly) different regions defined by functions.

5 Complexity of Region Counting Circles

The complexity of a path or cycle in an arrangement
of curves is the number of edges in the path or cycle.
By extension, the complexity of a disc or circle is the
complexity of the cycle that forms its boundary. To
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study the complexity of the region counting circles, we
proceed in two steps. We first bound the maximum
number of intersections between the inverse curves that
can occur in our model, then we bound the complexity of
the levels in the arrangements of the regions composing
the region counting circles.

A set of curves C = {c1, c2, . . .} is s-intersecting if
and only if ∀ci, cj ∈ C, ci 6= cj , |{ci ∩ cj}| ≤ s. In what
follows, CR is {∂R(p, q)|p, q ∈ R

2}.

In our model, the regions either are defined by a func-
tion, or are boolean compositions of such regions. We
must thus consider both cases to bound the number of
intersections of any region. As the function fR(p,q)(x)
is a polynomial function of bounded degree, we know
that the curve ∂R(p, q) is continuously derivable and
that any pair of distinct curves in CR intersects a con-
stant number of times. This is due to the fact that the
intersection of any pair of curves is the solution of a
polynomial equation of bounded degree. The same ob-
servation holds for CIR

as the function fIR(p,q)(x) is also
a polynomial function of bounded degree.

A bound on the number of intersections between re-
gions defined as boolean compositions is given in the
next lemma.

Lemma 4 If a set of curves C = {c1, c2, . . .}
is s-intersecting, then every set of curves C′ =
{F1(C), F2(C), . . .} is st2-intersecting, where the Fi are
curves obtained by a boolean formula of size bounded by
t on items of C.

5.1 Complexity of all region counting circles with

radius less than k

As previously mentioned, Ck
x,R is the kth polar level in

an arrangement of translated and rotated copies of a
star-shaped inverse curve, with p in its kernel.

We can thus express our problem in polar coordinates,
where every inverse curve is described by a function ρ =
τIR

(θ) giving, for every angle θ, the distance between
p and the curve ∂IR in that direction. For the same
reasons, we know that in polar coordinates τIR

(θ) is x-
monotone.

Thus we know that the curves are simple and s-
intersecting, and we can apply the bound given by
Sharir [11]: the complexity of the first k-levels in
an arrangement of general s-intersecting curves is in
O(λs(n/k)k2), where λs(x) is the maximum length of
(m, s)-Davenport-Schinzel sequences.

Simple examples, such as a dataset of points on a
circle using the disk with diameter p, q as region, exhibit
a Ω(kn) complexity.

p

q1 q2

q3

Figure 2: Simulation of a line arrangement with contin-
uously derivable curves.

5.2 Complexity of region counting circles with ra-

dius k

In this subsection, we prove that under some conditions
on the region R, we know that the complexity of a region
counting circle of radius k will be at least as large as the
complexity of the kth level in a line arrangement. The
exact complexity of those levels is a long standing open

problem; the best bounds we know are n2Ω(
√

log k) by
Toth [12] and O(nk1/3) by Dey [6].

An upper bound for our problem was given by
Chan [4] who proved that in any planar arrangement
of s-intersecting curves, the kth level has O(n2−1/(2s))
complexity. This bound can be applied directly if the
problem is expressed in polar coordinates.

A randomized algorithm to efficiently construct a
level has been presented by Har Peled [7]; it has a
O(λs+2(m + n) log n) expected running time, where m
is the complexity of the level being constructed. It can
be applied here to construct the disk of radius k.

Theorem 5 Let ρ(θ) be the polar function describing
an inverse curve ∂IR(p, q). If there exists an angle θ
such that ρ′(θ), the derivative of ρ(θ), is non-zero, and
ρ(θ) is continuous and derivable in the neighborhood of
θ, then for any set L of lines, there exists a set S of
points such that the complexity of the region counting
circle of radius k is at least the complexity of the kth

level in the arrangement of L.

The condition on ∂IR in this theorem can be ex-
pressed as a condition on the outer limit of the region
defining the region counting distance. If ∂IR contains
a continuously derivable segment with non-constant an-
gle, this means that ∂R also contains such a part.

Theorem 6 Let ∂IR(p, q) be a curve whose polar func-
tion is continuously derivable excepted for a finite set of
r points. If the derivative of the polar function is zero
for every derivable point of the curve, then the complex-
ity of the region counting circle of radius k is O(nr).

In our model, the regions and curves defined by
functions on R

2 are continuously derivable. How-
ever, the boolean operations on these curves can add
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non-derivable points at every intersection between two
curves. The number of such points is thus bounded by
the maximal number of intersections between the curves
in our model, which is constant as proved before.

A simple algorithm can be used to construct the disks
corresponding to the hypotheses of Theorem 6. We sort
in a list all the directions {α1, α2, . . .} corresponding to
non-derivable points. We sort the curves with respect
to their distance to the center in any direction in the
range [α1, α2] and the kth curve is the boundary of the
disk in that direction. Then we go on with the next
range [α2, α3]. We know that the only curves which are
not sorted correctly are the ones associated to the non-
derivable point corresponding to α2; we sort the list of
curves again, select the kth curve and keep going with
the next range. The total complexity is O(nr log nr)
and O(n log n) for the initial sortings, and O(nr log n)
to keep the list sorted and determine the right curve,
leading to a O(nr log nr) algorithm.

6 Approximation of Region Counting Distances and

Disks

A natural question is to find an algorithm to compute
the distance, and to find the bounds on the complex-
ity of this operation. Computing the region counting
distance is equivalent to performing a range counting
query, which is a well-studied problem [1]. As range
counting queries are expensive to solve exactly, we pro-
pose here a method to approximate the distances, disks
and circles.

We first bound the VC-dimension [13] corresponding
to the regions. We consider the range space (S, R),
where R represents R(p, q) for all p and q in R

2, with
regions representable in the model defined above.

We know that every region defined by a polyno-
mial function of bounded degree has a constant VC-
dimension and that every region defined by a boolean
function of constant size on regions with constant VC-
dimension has a constant VC-dimension. This ensures
that the VC-dimension of any region in our model is a
constant, say d.

Vapnik and Chervonenkis [13] proved that there exist
ε-approximations s of size O(d/ε2 log 1/ε) for all range
space of VC-dimension d such that the cardinality of
the original sets are proportional to the cardinality of
the approximated set with an error of ε.

We apply this result: let dε
R(p, q) be the region count-

ing distance defined on the ε-approximation s ⊂ S of
size O(d/ε2 log 1/ε). By [13], we have that for every
region R(p, q)

∣

∣

∣

∣

|s ∩ R(p, q)|

|s|
−

|S ∩ R(p, q)|

|S|

∣

∣

∣

∣

≤ ε

Thus, dε
R(p, q)|S|/|s| is an approximation of the region

counting distance dR(p, q). Deterministic algorithms to

construct ε-approximations exists [10]. Alternatively we
can select O(d/ε2 log 1/ε) points at random in the orig-
inal set and it will be an ε-approximation with high
probability, as shown in [13, 8].

An ε-approximated region counting disk Dk,ε
x,R is a re-

gion satisfying the following constraints: y ∈ Dk,ε
x,R ⇒

dR(x, y) ≤ k + nε and y 6∈ Dk,ε
x,R ⇒ dR(x, y) ≥ k − nε

Theorem 7 The disk D
k|S|/|s|
x,R using an ε-

approximation s ⊂ S is an ε-approximated region
counting disk Dk,ε

x,R for the full set S.

In other words, to have an approximated disk of ra-
dius k, we only need to take a random sample of the
points in S with fixed cardinality, and construct a disk
of radius k|S|/|s|. The precision, however, depends on
the size of the set.
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