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Abstract

We use Patricia tries to answer ε-approximate orthogo-
nal range search on a set of n random points and rect-
angles in k-d space. The approximate orthogonal range
search time using Patricia tries is determined theoreti-
cally to be O(k log n/εk−1) for cubical range counting
queries, improving the best known upper bound for
uniformly distributed input points and query rectan-
gles. Patricia tries are evaluated experimentally for ε-
approximate orthogonal range counting and reporting
queries (for 2 ≤ k ≤ 10 and n up to 1,000,000) using uni-
formly distributed random points and rectangles. For
ε = 0.05, an average of 50% fewer nodes are visited for
the Patricia trie (compared to the exact range search).

1 Introduction

Range search is among the fundamental problems in
computational geometry, geographical information sys-
tems, computer graphics and database applications.
Given a collection of keys (each containing multidimen-
sional attributes) and a multidimensional query rect-
angle, an orthogonal range search asks for all keys
in the collection with attribute values each inside the
given rectangle. Over the past 30 years, more than 60
data structures for range search have been presented
[1][3][5][7]. The motivation of our work is to improve the
speed of range search while allowing for small counting
(or reporting) errors.

Chazelle [4] gives a comprehensive overview of data
structures for k-d searching, including the description
of a dynamic k-d range reporting algorithm requiring
O(F (log(2n

F
)2) + logk−1 n) time (F = number of points

found in range), which is close to the lower bound. To
obtain better performance, several researchers turned
to an approximate version of the range searching prob-
lem: instead of counting the points in the exact specified
ranges, the data point whose distance to the bound-
ary of the range is within ε times the range’s diameter
may or may not be included in the count. The approx-
imate range searching problem was solved optimally
by Arya and Mount [2]. With an O(kn)-space struc-
ture called the balanced box-decomposition tree which
can be constructed in O(kn log n) time, ε-approximate
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range counting queries can be answered in O(2k log n +
(3
√

k/ε)k) time. If the ranges are convex, the query
time can be strengthened to O(2k log n+k2(3

√
k/ε)k−1).

They also presented a lower bound of Ω(log n+1/εk−1),
for the complexity of answering ε-approximate range
counting queries assuming a partition tree approach for
cubical range in fixed dimension.

The k-d trie [9] splits the search space based on the
digits of the data. Each partition splits a region of the
search space into two sub-regions of equal size. The
splitting is not continued further when a sub-region con-
tains one or no data points. The k-d trie has an annoy-
ing defect: there is one-way branching that leads to the
creation of extra nodes in the tree. The Patricia trie,
discovered by D.R. Morrison [8], avoids this problem by
removing all one-child internal nodes from the k-d trie
and storing the eliminated information in the nodes. Pa-
tricia tries can be preprocessed in O(n log n) time and
O(kn) space, and fewer internal nodes are visited for a
partial match search of a Patricia trie compared to a
k-d trie [6].

2 Approximate Orthogonal Range Search

Given n k-d points or rectangles and a k-d query rect-
angle, ε-approximate orthogonal range query counts (or
reports) points in the query rectangle or rectangles in-
tersecting the query rectangle, allowing errors near the
boundary of the query rectangle. We define a k-d query
rectangle W = [L1, H1] × [L2, H2] × · · · × [Lk, Hk],
Li ≤ Hi with center Z = (L1+H1

2
, L2+H2

2
, · · · , Lk+Hk

2
).

The edges of W have given lengths ∆1, ∆2, · · · , ∆k,
where ∆i = Hi − Li, ∀ i ∈ {1 , 2 , · · · , k}. We define
[MINi, MAXi], ∀ i ∈ {1 , 2 , · · · , k}, as the minimum
and maximum possible data coordinate values for di-
mension i. Given 0 ≤ ε ≤ 0.5, let W− = [L1+∆1ε, H1−
∆1ε]× [L2 +∆2ε, H2−∆2ε]×· · ·× [Lk +∆kε, Hk−∆kε]
be the k-d inner query rectangle with center at Z, and
let W+ = [L1−∆1ε, H1 +∆1ε]× [L2−∆2ε, H2 +∆2ε]×
· · · × [Lk −∆kε, Hk + ∆kε] be the k-d outer query rect-
angle with center at Z. (We assume MINi ≤ Li −∆iε
and Hi + ∆iε ≤ MAXi, ∀ i ∈ {1 , 2 , · · · , k}). For an
ε-approximate range search query, points inside W−

must be counted, and points outside W+ must not be
counted, and points between W− and W+ may be mis-
counted (see Figure 1).

We denote by T the Patricia trie constructed by in-
serting a set D of n k-d data points into an initially
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Figure 1: Approximate orthogonal range search queries
for ε ≈ 0.1.

empty trie (the insertion algorithm is in [11]). There
are altogether n − 1 internal nodes and n leaves in T .
The skipped bits are stored in an array SKIPSTR, and
every leaf is associated with one point.

Each node in a k-d trie covers part of the k-d space,
that is, every node has a cover space defined as NC =
[L1,U1]× [L2,U2]×· · ·× [Lk,Uk]. Arrays L and U store
the lower and upper bounds of a node’s cover space. The
root of k-d tries cover the whole space and child nodes
cover half of the search space volume of their parent. For
the root, NC has Li = MINi and Ui = MAXi, ∀i ∈
{1, · · · , k}. The nodes on level ` split at attribute p = (`
mod k)+1 (at the root, ` = 0). If a node on level ` has
cover space [L1,U1]×· · ·× [Lp ,Up]×· · ·× [Lk,Uk], then
its left child’s cover space is [L1,U1] × · · · × [Lp , (Lp +
Up)/2]× · · · × [Lk,Uk], and its right child’s cover space
is [L1,U1]× · · · × ((Lp + Up)/2,Up]× · · · × [Lk,Uk]. For
Patricia tries, ` is not the level of the trie, but the length
of the path from root to the node plus the length of the
skipped bits in the internal nodes along the path. The
node cover space must take the skipped bit string stored
in the nodes into consideration.

The ARC algorithm (Figure 2) is used to perform
an approximate range counting query on T . The search
proceeds from the root to the leaves, accounting for pos-
sible skipped bits stored at internal nodes. ArraysL and
U are the lower and upper limits of the node’s cover
space, and are initialized to be MINi and MAXi, re-
spectively, ∀i ∈ {1, · · · , k}. If NC falls within W+ at
some node T , then all data points in the subtree at-
tached to T are the answers of the approximate range
search. If NC falls outside of W−, the range search
stops. If NC overlaps both W− and W+, then we re-
cursively visit T ’s children. When we reach a leaf node,
we determine whether the data point stored in this node
is in W using the CheckNode function.

3 Approximate Range Searching Cost

Without loss of generality, the following discussions are
all based on unit space [0, 1]k. We assume the input data
and the query rectangle W are drawn from a uniform
random distribution.

ARC(T, `,L,U , W−, W, W+, Count)
1 if T is a leaf node
2 then if T.POINT ∈W
3 then Count← Count + 1
4 else i← 0
5 while i < T.SKIPSTR.length()
6 do p← (` mod k) + 1
7 if T.SKIPSTR[i] = 0
8 then U [p]← (L[p] + U [p])/2
9 else L[p]← (L[p] + U [p])/2 + ε

10 i← i + 1
11 `← ` + 1
12 black = 0
13 for (i = 1; i <= k; i← i + 1)
14 do if (W+.L[i] ≤ L[i]) and
15 (U [i] ≤W+.H [i])
16 then black← black + 1
17 else break
18 if black = k
19 then Count← Count + T.WEIGHT
20 return
21 for (i = 1; i <= k; i← i + 1)
22 do if (L[i] > W−.H [i]) or
23 (U [i] < W−.L[i])
24 then return
25 p← (` mod k) + 1
26 if left[T ] 6= nil

27 then U [p]← (L[p] + U [p])/2
28 ARC(left[T ], ` + 1,L,U ,
29 W−, W, W+, Count)
30 if right[T ] 6= nil

31 then L[p]← (L[p] + U [p])/2 + ε
32 ARC(right[T ], ` + 1,L,U ,
33 W−, W, W+, Count)

Figure 2: Pseudo-code for the approximate
range counting algorithm in the Patricia trie.
T.SKIPSTR is the skipped bit string stored in T and
T.SKIPSTR.length() is the length of T.SKIPSTR.
T.SKIPSTR[i] is the ith bit of T.SKIPSTR. ε is a
small value to guarantee T ’s left and right children’s
cover spaces don’t share any point. T.POINT is the
data point stored in T , and T.WEIGHT is the number
of points in the subtree attached to T .

Theorem 1 Given a Patricia trie T built from n ran-

dom k-d data points and a random query rectangle W
of dimensions ∆1 × ∆2 × · · · × ∆k, and 0 < ε ≤ 0.5,
ε-approximate range counting queries visit

O(log nΣk
p=1(

∏k

i=1,i6=p(2 + ∆i

∆p
(1

ε
− 2)))

nodes in T .

Proof. A node is said to be expanded if the algorithm
visits the children of this node. For a node to be ex-
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panded, its node cover space must intersect with both
the inner query rectangle W− and the outer query rect-
angle W+. We call the facet of the query rectangle per-
pendicular to the pth orthogonal axis the p-facet. Ac-
cording to the definition of W− and W+, the p-facets of
W− and W+ are separated from each other at least by a
distance of 2∆pε, ∀p ∈ {1, · · · , k}. So a node in T with
|NC(p)| < 2∆pε, ∀p ∈ {1, · · · , k} is never expanded in
the algorithm ARC, where |NC(p)| is the length of the
p-th side of node cover space NC.

Each partition of T splits a region of the search space
into two equal sub-regions. Each coordinate axis gets
cut in turn, in a cyclical fashion of 1, 2, · · · , k, 1, 2, · · · ,
which results in regions such that the length of the
longest side is equal to or twice that of the smallest
side, and |NC(1)| ≤ |NC(2)| ≤ · · · ≤ |NC(k)|. Assume
a node in T intersects both the p- facet of W− and the
p-facet of W+, 1 ≤ p ≤ k, then |NC(p)| ≥ 2∆pε, and
|NC(i)| ≥ ∆pε, ∀i ∈ {1, · · · , p − 1}, and |NC(j)| ≥
2∆pε, ∀j ∈ {p + 1, · · · , k} (see Figure 3). So there are
at most

(
∏p−1

i=1
(1 + d∆i−2∆iε

∆pε
e))(∏k

j=p+1
(1 + d∆j−2∆jε

2∆pε
e))

regions intersecting with both the p-facet of W− and
the p-facet of W+. Each k-d rectangle has 2k facets, so
altogether there are at most

2Σk
p=1(

∏p−1

i=1 (1 + d∆i−2∆iε
∆pε

e))(
∏k

j=p+1(1 + d∆j−2∆jε

2∆pε
e))

≤ 2Σk
p=1(

∏p−1

i=1
(2 + ∆i−2∆iε

∆pε
))(

∏k

j=p+1
(2 +

∆j−2∆jε

2∆pε
))

≤ 2Σk
p=1(

∏k

i=1,i6=p(2 + ∆i−2∆iε
∆pε

))

regions overlapping both W− and W+. The depth of
the Patricia trie is O(log n) [12], so we reach the desired
result. �

+
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Figure 3: An illustration of a node in T with cover space
NC intersecting both the 1-facet of W− and the 1-facet
of W+; ε = 0.1.

Corollary 2 Given a Patricia trie T built from n ran-

dom k-d data points and a random query square W , and

0 < ε ≤ 0.5, ε-approximate range counting queries visit

O(k log n/εk−1)

nodes in T .

Besides the number of nodes visited in the ARC al-
gorithm, up to 2F additional nodes are visited in an-
swering the approximate range search reporting queries
[10], where F is the number of points in range.

4 Experiments

Our experiments of approximate range counting and re-
porting were performed using uniformly and randomly
distributed data from the interval [0, 1] for ε ranging
from 0 to 0.5, 2 ≤ k ≤ 10, n up to 1,000,000, and the
query square’s volume vol ranging from 0.0001 to 0.01.
The programs were run on a Sun Microsystems V880
with four 1.2 GHz UltraSPARC III processors, 16 GB
of main memory, running Solaris 8. Each experimental
point in the following graphs was done with an average
of 300 test cases.

4.1 k-d points

The experimental results with k-d query square’s vol-
ume vol = 0.001 for Patricia tries are found to be con-
sistent with the theoretical analysis (see Figure 4). We
find that there are significant improvements in running
time when ε grows from 0 to 0.05. As ε increases, the
running times tend to converge, irrespective of k. Fig-
ure 5 shows f = yε=x

yε=0
, where yε=0 is the number of nodes

visited for an exact range counting query, and yε=x is
the number of nodes visited for an ε-approximate range
counting query. The average improvement of the ap-
proximate range counting queries when ε = 0.05 and
k ≤ 5 is more dramatic than that of the range reporting
queries.

For query squares with fixed side length w, we define

the fraction of points miscounted as δε=x = |Fε=x−Fε=0|
Fε=0

,
where Fε=x is the number of points counted as in range
for an ε-approximate range query, and Fε=0 is the num-
ber of points in the exact range query. The experimen-
tal results show that when k = 2, n = 1, 000, 000 and
vol = 0.001, δε=x ranges from 0.002 (ε = 0.05) to 0.05
(ε = 0.5) [10], so relatively few points are miscounted.
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4.2 k-d rectangles

A k-d rectangle R can be represented as a 2k-d point
(xmin

1 , xmax
1 , xmin

2 , xmax
2 , · · · , xmin

k , xmax
k ) [11]. Given a

k-d query rectangle W = [L1, H1] × [L2, H2] × · · · ×
[Lk, Hk], R intersects W iff xmin

i ∈ [MINi, Hi] and
xmax

i ∈ [Li, MAXi], ∀i ∈ {1, · · · , k}. Each node in
T covers part of the 2k-d space, that is, every node has
a cover space defined as NC = [L1,U1] × [L2,U2] ×
· · · × [L2k,U2k]. We define the query rectangle W ’s
cover space WC = [MIN1, H1] × [L1, MAX1] × · · · ×
[MINk, Hk] × [Lk, MAXk], the inner query rectan-
gle W−’s cover space WC− = [MIN1, H1 − ∆1ε] ×
[L1 + ∆1ε, MAX1] × · · · × [MINk, Hk − ∆kε] × [Lk +
∆kε, MAXk], and the outer query rectangle W+’s cover
space WC+ = [MIN1, H1 +∆1ε]× [L1−∆1ε, MAX1]×
· · · × [MINk, Hk + ∆kε] × [Lk − ∆kε, MAXk]. The
ARC algorithm (Figure 2) can be used for k-d rect-
angles with some modifications: all ks are changed to
2ks, and WC−, WC and WC+ are used instead of W−,
W and W+.

For our experiments, rectangle centers were uniformly
distributed and the lengths of their sides uniformly and
independently distributed between 0 and maxsize (0 ≤
maxsize ≤ 0.01). Figure 6 shows the average number
of nodes visited versus ε with k-d query square’s volume
vol = 0.001 for maxsize = 0.001. An average of 40%
fewer nodes are visited for the Patricia trie when 0.05 ≤
ε ≤ 0.5, compared to the exact range query.

5 Conclusions

We show that Patricia tries can be used to answer or-
thogonal range counting queries visiting O(k log n/εk−1)
nodes for cubical range queries on uniform random k-d
points. Can the result be improved closer to the lower
bound of Ω(log n+1/εk−1) in fixed dimension? Experi-
mental results show that if we allow small relative errors,
the number of nodes visited for range counting can be
reduced on average by 1/2 for query squares with vol-
ume ranging from 0.0001 to 0.01, ε = 0.05, 2 ≤ k ≤ 10
and n = 1, 000, 000. Range reporting queries have a
less dramatic improvement when k ≤ 5, because of the
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Figure 6: Number of nodes visited versus ε in Patricia
trie for counting k-d rectangles with k-d query square’s
volume vol = 0.001 (n = 1, 000, 000 and maxsize =
0.001).

additional O(F ) nodes visited, which is the dominating
term in the number of the nodes visited during range
reporting. Another open question is how to perform
combined textual and spatial data approximate range
search.
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