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Abstract

As an easy example of divide, prune, and conquer, we
give an output-sensitive O(n log k)-time algorithm to
compute, for n intervals, a maximum independent set
of size k.

1 Introduction

Consider the problem of finding a maximum indepen-
dent set of n intervals on the real line – that is, a sub-
set of non-overlapping intervals of maximum size, k. If
the intervals are sorted by their right endpoints, then
an easy linear-time greedy algorithm solves the prob-
lem [3]: take the interval I that ends first; skip all inter-
vals that intersect I, which are immediately consecutive
in the sorted order; and repeat. On the other hand, if
the intervals are not sorted, element uniqueness gives
an Ω(n log n) lower bound [3].
This note establishes an O(n log k)-time algorithm

that finds the same solution as the greedy algorithm.
This running time can be called output sensitive, as
it depends on this size k of a maximum independent
set. It is obtained by the algorithmic technique of di-
vide, prune, and conquer, which I first encountered in
output-sensitive algorithms for convex hulls [1, 2].

2 Divide, prune, and conquer

A few divide and conquer algorithms in computational
geometry also prune to make sure that they expend ef-
fort only on subproblems that are guaranateed to con-
tribute to the solution. A lemma of Edelsbrunner and
Shi [2] can show output-sensitive running times for such
algorithms; we give a simple proof, based on recursion
trees, from Chan [1].
Consider a recursion tree with a cost function c de-

fined on tree nodes such that c(ν) is the resources spent
directly on the call ν, excluding what was spent in ν’s
recursive subcalls. The cost function c is called α-fading.
for some constant α > 0 if c(ω) ≤ αc(ν) whenever ω is
a child of ν. The cost of the recursion tree. is the sum of
all node costs; it captures the total amount of resources
spent during the execution.
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Lemma 1 Let T be a recursion tree with k leaves and
an α-fading cost function. If the sum of costs at each
level of T is at most C, then the total cost of T is at
most C(�log1/α k�+ 1

1−α ).

Proof. The total cost of the first �log1/α k� levels is
bounded by C�log1/α k�. The remaining costs are
bounded by the cost of at most k paths to the leaves that
start from level log1/α k = − logα k. The cost of the first
node on each path is bounded by Cα− logα k = C/k, so
the cost of each path is bounded by the geometric series
(C/k)

∑
i≥0 αi = (C/k)(1− α)−1. This establishes the

lemma. �

3 Computing a maximum-size independent set of
intervals

Given a set of intervals, S, we can find the same max-
imum independent set found by the greedy algorithm
without sorting first. The idea is to perform divide and
conquer, but to prune subproblems that will not pro-
duce a new interval in the solution: find the median of
all 2n interval endpoints, and partition S into the sets
of intervals S− to the left, S+ to the right, and S| span-
ning the median value. Recursively find MIS(S−) on
the left, and return the coordinate x of the rightmost
endpoint in this MIS. Discard any intervals of S| that
span x, then, if S| is non-empty, find the interval s ∈ S|
with the leftmost right endpoint. If S+ is empty, out-
put s; otherwise recursively find MIS({s} ∪ S+). This is
detailed in pseudocode as Alg. 1.

Corollary 2 Function MIS(S) finds a maximum in-
dependent set of size k among the n intervals S in
O(n log k) time.

Proof. Function MIS(S) outputs an interval at every
leaf of its recursion tree, so it has at most k leaves. The
cost of finding a median and splitting S is |S|; intervals
are partitioned in the division, so the cost of each level
is bounded by O(n). By choosing the median of all
endpoints, we guarantee that |S−| = |S+| ≤ |S|/2, since
S| has one endpoint to each side. Since we add at most
one segment to S+ in recursion, the cost is 1/2-fading,
and Lemma 1 establishes the bound. �
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Function MIS(S)outputs MIS & returns the rightmost x coordinate
find the median of the 2|S| endpoints of |S|.
partition S into left S−, crossing S|, and right S+ sets.
if S− is non-empty

{ x = MIS(S−); delete from S| any intervals containing x; }
delete from S| all but the segment with leftmost right endpoint, if any.
if (S+ is empty)

if (S| contains a single segment s)
{ output s; set x = right endpoint of s }

else x = MIS(S| ∪ S+);
return x;

Algorithm 1: Function MIS(S) takes a set of intervals S, outputs the intervals of a maximum independent set (MIS)
that would be found by the greedy algorithm, and returns the x coordinate of the rightmost point in the MIS.

If we prefer not to implement linear-time median find-
ing for an otherwise simple algorithm, we can choose an
interval midpoint at random to serve as the median.
The same lemma establishes O(n log k) expected time.

Corollary 3 Function MIS(S), modified to choose the
midpoint of a random interval as median, finds a k in-
terval MIS among n intervals S in O(n log k) expected
time.

Proof. The number of leaves and per-level cost bound
are as in the previous corollary. When n = |S| elements,
the expected maximum of |S−| and |S+| after partition-
ing is

1
n

∑

1≤i<n

max{i, n − i} ≤ 2
n

∑

�n/2�≤i<n

i

≤ 1
n

(
n(n − 1)− n2

4
) ≤ 3

4
n

Thus, the expected time is (3/4)-fading, and Lemma 1
establishes the bound. �

Although for circular-arc graphs a maximum inde-
pendent set can also be found in linear time after sort-
ing [4, 5], our result cannot be extended. Timothy Chan
has pointed out (personal communication) that the ele-
ment uniqueness lower bound of Ω(n log n) applies even
to determine if the maximum independent set has k = 2
elements: given angles α1, α2, . . . , αn, β1, β2, . . . , βn ∈
[0, π), we could make intervals (αi, αi + π) and (βj +
π, βj + 2π), which would allow an independent set of 2
intervals iff there exist i and j such that αi = βj .

References

[1] Timothy M. Y. Chan. Output-sensitive Construction
of Convex Hulls. PhD thesis, Dept. Comput. Sci.,
Univ. British Columbia, Vancouver, BC, 1997.

[2] H. Edelsbrunner and W. Shi. An O(n log2 h) time al-
gorithm for the three-dimensional convex hull prob-
lem. SIAM J. Comput., 20:259–277, 1991.

[3] U. I. Gupta, D. T. Lee, and J. Y.-T. Leung. Effi-
cient algorithms for interval graphs and circular-arc
graphs. Networks, 12:459–467, 1982.

[4] Glenn K. Manacher and Terrance A. Mankus. A
simple linear time algorithm for finding a maximum
independent set of circular arcs using intervals alone.
Networks, 39(2):68–72, 2002.

[5] S. Masuda and K. Nakajima. An optimal algorithm
for finding a maximum independent set of a circular-
arc graph. SIAM J Comput, 17:41–52, 1988.

2


