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1 Introduction

A cartogram is a type of map used to visualize data. In a
map regions are displayed in their true shapes and with
their exact relations with the adjacent regions. How-
ever, such a map can only be used to demonstrate the
actual area values of the regions. Sometimes, we need to
display other data on a map, such as population, pollu-
tion, electoral votes, production rates, etc. One efficient
way to do so is to modify the map such that the area of
each shape corresponds to the data to be displayed. A
map with given relationships between regions for which
each region has pre-specified area is called a cartogram

(see [1] for details).
There are two major cartogram types: contiguous

area cartograms [2, 3, 6, 7, 12], where the regions
are deformed but stay connected, and non-contiguous
area cartograms [8], where regions preserve their shapes
but may lose adjacency relationships. Rectangular car-

tograms, where every region is a rectangle is a specific
type of contigous area cartograms which tries to pre-
serve both the adjacency relations and the shape, but
this does not exist for all area values. Kreveld and
Speckmann [13] introduced the first automated algo-
rithms for such cartograms. Heilmann et al. proposed
RecMap [5] to approximate familiar land covering map
region shapes by rectangles. Rahman et al. studied slic-
ing and good slicing graphs and their orthogonal draw-
ings [9], which are similar to orthogonal cartograms.

It was left as an open problem whether testing the fea-
sibility of a rectangular cartogram is NP-hard. In this
paper, we make significant progress towards answering
this question. We first study what we call cartograms of

orthogonal octagons where every region is an orthogonal
polygon with at most 8 sides. We also assume that the
cartogram must be placed within a rectangle of fixed
size (a canvas). We show that testing whether a car-
togram of orthogonal octagons exists is NP-hard.

We then use a very similar reduction to prove NP-
hardness of a problem where, all faces are rectangles,
except for one face corresponding to the “sea” around
islands and peninsulas (see the examples in [13]).

2 Definitions

Recall that a graph G = (V, E) is called planar if it
can be drawn in the plane without crossing. Such a
drawing defines a cyclic order of incident edges around
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each vertex; the collection of these cyclic orders is called
the planar embedding. A planar drawing of a planar
graph defines connected regions of the plane called faces;
the unbounded region is called the outer-face. A planar
embedding of a graph defines uniquely the faces, except
for the choice of the outer-face. A planar graph where
both a planar embedding and an outer-face have been
specified is called a plane graph.

Given a plane graph, we define the dual graph by
defining a vertex for every face. For every edge in the
primal graph incident to faces f1 and f2, we define a
dual edge in the dual graph incident to the vertices of
the faces f1 and f2.

An orthogonal cartogram dual is a plane graph with
one special vertex C (the canvas) where every incidence
between a vertex and an edge is labeled with one of
{N,S,E,W} corresponding to four directions.

It may not be straightforward to see that any such
plane graph indeed gives rise to a valid drawing, but
this can be shown using the technique of converting an
orthogonal representation into an orthogonal drawing
proposed by Tamassia [11].

All that is needed to specify a cartogram is to demand
an area of each face. Thus an orthogonal cartogram is an
orthogonal cartogram dual G, together with a positive
integer area for every vertex v 6= C of G.

We will sometimes additionally demand that the
whole drawing fits inside the canvas. Thus we may spec-
ify a w×h rectangle R and demand that the drawing fit
inside it. In particular, w ·h must be at least the area of
all other vertices together, but it may be more, allowing
for some “dead space” (also known as the sea) on the
outer-face. Note that the aspect ratio of the rectangle
for the canvas does not matter; if the drawing fits into
any rectangle of area w ·h, then after suitable scaling it
fits into all rectangles of area w · h.

3 NP-hardness

We show now that testing whether an octagonal or-
thogonal cartogram can be realized is NP-hard. The
proof is by reduction from Partition defined as fol-
lows. Assume that we are given a set A of positive
integers a1 . . . an with

∑n
i=1

ai = 2S for some integer
S. We want to find a subset I of A which satisfies∑

ai∈I ai = S. It is known that this is NP-hard [4].

3.1 Construction

Given an instance of Partition a1, . . . , an, we cre-
ate the cartogram as follows. We have 2n + 5 faces
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A1, P1, . . . , An, Pn and M, B1, . . . , B4, which all are rec-
tangles except Pi, i = 1, . . . , n is a Z-shaped octagon.

The adjacency relations between these faces are given
in Figure 1, both as a drawing and by giving the car-
togram dual. For easier visualization of the latter, we
direct the edges and show the label only for the tail
of each edge; we also split the canvas C into multiple
vertices. Furthermore, we show Ai and Pi only for the
special cases i = 1, n and for one generic i; the generic
i needs to be repeated n − 3 times.

Figure 1: The drawing and the cartogram dual of
the cartogram generated from the given Partition in-
stance.

Now we explain the area requirements, depending on
four parameters m, k, C and p. We will use k = n,
m = 2nS+4, C = 2n2 and p = n+8, but actually a wide
range of parameters is possible and can be calculated
from the proofs of the lemmas. The area requirements
and purposes of faces are as follows:

• Each rectangle Ai corresponds to one number ai of
the Partition instance. We set area(Ai) = C · ai.

• Each Z-shaped octagon Pi is a buffer between rec-
tangles Ai and Ai+1 (or M); we set area(Pi) = p.

• M is a huge rectangle with area m2 that splits the
rest of the canvas into essentially two parts.

• B1, . . . , B4 builds a frame that forces M to be an
m × m-square. We set area(B1) =area(B3) = k,
area(B2) = m and area(B4) = m + 1.

Some easy calculations show that with our choice of
parameters we have 2CS + np = (m + k)2 − m2; this
shows that the area of all regions together is (m+k+1)2

and by using an (m + k + 1) × (m + k + 1) as canvas,
there is no empty space left for a sea.

We now show our constructed cartogram is realizable
iff the instance of Partition has a solution.

From cartogram to Partition Assume first that
we have a realization of the cartogram. We need some
intermediary lemmas.

Lemma 1 The widths and heights of M , B1, B2, B3

and B4 are as labeled in Figure 1.

Proof. Note that the left edges of B3 and B4 are
collinear in any realization and touch the top and bot-
tom of the canvas. Since they have a total area of
m + k + 1 and the canvas has height m + k + 1, the
widths of B3 and B4 have to be 1. Due to the individ-
ual area requirements, this fixes the height of B3 to k
and the height of B4 to m+1. Similarly B1 and B2 will
have a fixed height of 1 and B1 will have a width of k
while B2 will have a width of m. This fixes the size of
M to m × m in any realization. �

For the rest of the proof, L marks the line through the
left side of the rectangle M and B is the line through
the bottom side of M . See also Figure 2. For each Ai,
we now have two possible layouts: Ai may be placed to
the left of line L or below line B. See Figure 2. One can
show that a rectangle Ai cannot be both below B and
to the left of L, because there is not enough space for
it. By our choice of parameters, one can immediately
verify the following:

Figure 2: Two possible layouts for A1.
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Lemma 2 The total area to the left of line L is less

than C(S + 1). The total area below line B is less than

C(S + 1).

Lemma 3 If I denotes the indices of rectangles Ai to

the left of L, then
∑

i∈I ai = S.

Proof. By Lemma 2, we have
∑

i∈I area(Ai) =∑
i∈I Cai < C(S + 1), so

∑
i∈I ai < S + 1, and hence∑

i∈I ai ≤ S since all numbers are integers. All rectan-
gles with indices not in I are not to the left of L and
hence must be below B. So

∑
i6∈I area(Ai) < C(S + 1)

by Lemma 2, which similarly implies
∑

i/∈I ai ≤ S.
Since

∑
i∈I ai +

∑
i/∈I ai = 2S, we must have equality

for both sets. �

With this, a realization of the cartogram clearly gives
a solution to the Partition instance.

From Partition to cartogram Now we work on the
other direction. Assume that the Partition instance
has a solution I, i.e.,

∑
i∈I ai = S. Principally, the

idea to construct the cartogram is easy: Let the width
and height of M, B1, . . . , B4 be as indicated in Figure 1,
and position each Ai, Pi pair in one of the two fashions
shown in Figure 2, depending on whether i ∈ I.

The details are more complicated, because we need to
choose the dimensions of Ai and Pi such that all regions
fit exactly into the L-shaped region. We will show that
such coordinates exist, by giving two layouts that don’t
quite work, and arguing that there exists a realization
somewhere between them.

For the claims to come, we will need to introduce some
notations. The width (height) of an L-shaped region X
is the width (height) of its bounding box. Let L(X) and
B(X) be the vertical and horizontal lines through the
unique reflex vertex of X . We call the rectangle to the
left of L(X) the left region, and its width the left width.
We call the region below B the bottom region, and its
height the bottom height.

The first L-shaped region that we consider is what is
left of the canvas after placing M, B1, . . . , B4; we will
call this L0. It has width and height m + k and left
width and bottom height k. The other two L-shaped
regions are the areas occupied by the two layouts that
we are going to define.

We also need some notations for the realizations of Pi.
Consider Figure 2 again. In either method of realizing
Pi, it is the union of three rectangles that overlap at the
corners. One of these spans the height of the available
area; we call this the left rectangle. Another one spans
the width of the available area; we call this the bottom

rectangle. The third one is only adjacent to Ai and the
outside; we call this the end rectangle.

Now we are ready to define the layouts precisely:

• Set H = m + k and W = m + k; these keep track
of the bounding box of the remaining L-region.

• For i = 1, . . . , n:

– Place Ai at the bottom left corner.
– If i ∈ I, set the width of Ai to be (area(Ai) +

2)/H , and set the height accordingly. This
leaves two units of area free above Ai; these
will be covered by the end rectangle of Pi.

– If i 6∈ I, set the height of Ai to be (area(Ai)+
2)/W , and set the width accordingly.

– Choose the proper shape for Pi as in Figure 2.
– The dimensions for Pi depend on the layout:

∗ In the first layout, choose dimensions of
Pi such that the left rectangle has area
at least n + 4 and the bottom rectangle
has area at least 2. Recall that Pi has
area n + 8 and that the rectangles of Pi

intersect, so there is enough area of Pi to
do this.

∗ In the second layout, the bottom rectan-
gle has area at least n + 4 and the left
rectangle has area at least 2.

– Update W and H by subtracting the union of
Ai and Pi from the free region.

Let L1 be the union of A1, P1, . . . , An, Pn in the first
layout, and L2 be the union of A1, P1, . . . , An, Pn in the
second layout. Neither L1 nor L2 is a realization of the
cartogram, since they don’t fit into L0. We will show
that some layout between L1 and L2 does fit. To do so,
we first show that L1 is too wide and L2 is too slim.

Lemma 4 The left width of L1 is not smaller than the

left width of L0, and the left width of L2 is not bigger

than the left width of L0.

Proof. These hold due to the dimensions we assigned
to Ai and Pi pairs. �

Lemma 5 There exists a realization of the cartogram

such that all rectangles of all Pi’s have area at least 2.

Proof. L1 has at least area n + 4 in the left rectangle
of each Pi, and at least 2 units area in the bottom rec-
tangle, whereas for L2 it was vice versa. We can now
define intermediary layouts between L1 and L2, where
we gradually shift area from the left rectangle of each
Pi to the bottom rectangle. In the beginning we have
L1, where the left width is at least k (by Lemma 4), and
at the end we have L2, where the left width is at most
k. At some point we have a layout L∗ with left width k,
and its height and width is m+k. L∗ must have exactly
the shape of L0. Finally note that all rectangles of all
Pi’s in both L1 and L2 have area at least 2, and this
holds for all intermediary drawings. �

Thus given a solution to Partition, we can obtain a
cartogram, which proves our main result:

Theorem 6 Testing whether an orthogonal octagonal

cartogram is realizable is NP-hard.
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3.2 Rectangular cartograms with sea

The same construction leads to an NP-hardness result
for rectangular cartograms if a sea is allowed. We re-
place octagon Pi with a rectangle Ri that connects to Ai

and B1. Ri has area 1. This leaves some empty space
(sea) since Ri requires less area than Pi. The sea will
take on the role of a “buffer”. See Figure 3.

Figure 3: NP-hardness with only rectangular regions
and a sea.

With exactly the same proof as before one shows that
if this cartogram can be realized, then the Partition

instance has a solution; note that nowhere in this part
of the proof did we make use of the octagons Pi.

On the other hand, if Partition has a solution, then
we create a cartogram as before. Now we can place Ri

inside the end rectangle of Pi (if i ∈ I) or inside the left
rectangle of Pi (if i 6∈ I); we know that these rectangles
have area at least 2 and hence there is sufficient space
for Ri. We thus obtain the following theorem.

Theorem 7 Testing whether a rectangular cartogram

with a sea is realizable is NP-hard.

4 Conclusion and open problems

In this paper, we studied the complexity of realizing a
rectangular cartogram that is bounded by a canvas. The
main question (is this NP-hard?) remains open, but
we showed that two closely related results are indeed
NP-hard. In particular, the small (and realistic) step
of adding a sea bounded by a canvas to a rectangular
cartogram makes the problem NP-hard.

The most pressing open problem is to resolve the com-
plexity of rectangular cartograms. Can we do away with
the sea? Another very interesting problem is whether
this problem is actually NP-complete, i.e., is it in NP?
Also note that, Partition has a pseudo-polynomial
time solution which means our proof does not ensure
Strong NP-Hardness.

Finally, we are interested in exploring cartograms
with orthogonal octagons (or k-gons for some small
number of k) further. Note that k-gons are more flexible
than rectangles, and thus more cartograms will be real-
izable. In particular, Speckmann et al. showed that
all cartograms are realizable if all faces have a con-
stant number of corners [10]. Also, a number of existing
heuristics seem to rely on using k-gons for small k.
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