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Abstract

We present a diagram that captures containment infor-
mation for scalable rotated and translated versions of
a convex polygon. For a given polygon P and a con-
tact point q in a point set S, the diagram parameterizes
possible translations, rotations, and scales of the poly-
gon in order to represent containment regions for each
additional point v in S. We present geometric and com-
binatorial properties for this diagram, and describe how
it can be computed and used in the solution of several
geometric problems.

1 Introduction

Given a set of points in the plane and a convex poly-
gon, we consider problems in which we try to cover the
points (or a maximum number of them) with the given
polygon. Depending on the specific problem, we allow
the polygon to be translated, rotated, scaled, or any
combination of the above.

One set of problems that has received considerable
attention in the literature of computational-geometry is
the placement of a polygon so that it contains a given
point set (or a subset of it) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
Problem variants include placement of a polygon by
translation only, placement by translation and rotation,
or placement allowing some geometric transformation
(such as scaling, offsetting, or perspective transforma-
tions). Optimization variants of the problem include
maximization of the number of contained points as well
as minimization of the size of the polygon (or polygonal
annulus) by either scaling or offsetting.

One such problem, that of finding a translation and
rotation of a convex polygon P that maximizes the num-
ber of contained points from a given input set S, was
studied by Dickerson and Scharstein [6]. As part of their
solution they presented the so-called rotation diagram.
The rotation diagram RP,q represents all possible place-
ments of a convex polygon P in contact with a particular
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point q ∈ S. This 2D diagram parameterizes transla-
tions along one axis and rotations along the other axis.
For every other point v ∈ S, the diagram has a region
of all placements of P containing v. The cited work
describes the combinatorial and geometric properties of
rotation diagrams.

Barequet and Dickerson [3] followed that work and
created the so-called translation-scale diagrams. These
diagrams are also 2D, in which one axis represents scal-
ing of the polygon and the other axis represents trans-
lation of the polygon. It is shown in [3] how a few con-
tainment problems can be solved using those diagrams.

In [3, 6], and also here, the diagrams emphasize place-
ments of a polygon that are in contact with some point
of the set. This is because any not-in-contact placement
of the polygon that optimizes some point-containment
problem can be modified to an in-contact placement
without altering the set contained in the polygon.

In this paper we first explore polygon placements that
allow scaling, rotating, and translating the polygon. In
particular, we present a 3D containment diagram simi-
lar to that of [3, 6], but representing all of translation,
rotation, and scale. We show some properties of the di-
agram and solve some problems by using the diagram.

2 The Diagram

Our goal is to combine the two diagrams presented
in [3, 6]. Given a convex m-gon P and a set S of n
points, we want to build a 3D diagram that describes
all the possibilities to cover S with P when we allow
translation, scale, and rotation of P .

In [3] TS diagrams are built as follows. A diagram
is built for every point q ∈ S. The diagram represents
all the different ways to put a copy of P such that q
is in contact with the boundary of P . For every other
point v ∈ S we draw a region in DP,q, the diagram of q.
The x-axis parameterizes the translation. Every point
on the x-axis represents a point on the boundary of P
that will cover q. The y-axis parameterizes the scale.
Every point on the y-axis represents the inverse of the
scale of the polygon P needed to cover the point v after
the translation, if possible.

We extend the TS diagram of [3] to the third (z)
dimension (the height), where the additional dimension
represents rotations of P . Consider a TS diagram, and
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slightly rotate P clockwise. That is, advance slightly
along the z direction in the diagram. How will the new
TS diagram look like?

For ease of exposition we temporarily restrict our at-
tention to only one region in the diagram. So there are
only two points in the set, q, v, and we draw the region
created for v in the diagram of q. Since P is rotated
clockwise, −→qv hits the vertices of the upper chain earlier
relative to the x-coordinate of the hitting points before
the rotation. Therefore, the vertices of the upper chain
will move to the left in the diagram. As we continue
to rotate P , vertices of the upper chain will pass above
vertices of the lower chain. After rotating P enough, the
leftmost vertex of the upper chain becomes the leftmost
vertex of the lower chain, and the rightmost vertex of
the lower chain becomes the rightmost vertex of the up-
per chain. As we continue to rotate P , the TS diagram
will scroll counter-clockwise. Note that as the vertices
move to the left, their heights are changed as well.

If we fix the scale and consider the two-dimensional
diagram spanned by the two other axes, we will get the
translation-rotation diagram [6] for that scale. As the
scale (of the plane) grows, there is less freedom in trans-
lating and rotating the polygon P for covering the point
v (while keeping q on the boundary of P ), and hence the
translation-rotation diagram shrinks. The highest point
in the three-dimensional diagram represents the maxi-
mum scale of the plane (that is, the minimum scale of
P ) that allows the coverage of v by P . The two other co-
ordinates specify the translation and rotation. Clearly,
in this configuration the points v and q lie at the two
endpoints of the diameter of the rotated version of P .

3 Properties

Define the structure of a TS diagram to be the order of
the vertices of the diagram according to their x coordi-
nates (along the translation axis of the diagram).

Theorem 1 A translation-scale-rotation diagram is

made of O(m2) slices with different structures.

Proof. A change in the structure of the diagram is
caused by rotating P such that if the vector −→qv origi-
nates from a vertex of P , it points in the direction of
another vertex of P . Clearly, there are O(m2) critical
rotation angles of this type. As we rotate the polygon
a full cycle in a monotone fashion, we reach every angle
exactly once. Therefore, no structure can appear more
than once, and the claim follows. �

Consider a vertex u of P . We will now describe its
effect on the diagram. Let α be the angle between the
two edges of P that share u. Note that instead of ro-
tating the polygon by θ we will rotate −→qv by −θ. In the
course of this process u draws a z-monotone curve.

For a given vertex u ∈ P , let us divide the z axis (the
rotation) into four parts. In the first part u is on the
lower chain. This part is α-long and the height of the
corresponding vertex in the diagram is the width of P in
the direction −→qv rotated by −θ and originating from u.
In this part u draws a curve which is the concatenation
of m simple curves. Each simple curve represents the
widths of P as above, in a range of rotations: from the
rotation in which −→qv points to a vertex w ∈ P to the
rotation in which it points to a neighbor of w.

In the second and forth parts, each one of length π−θ,
u is the rightmost and leftmost vertices of the region,
respectively. In the third part u is on the upper chain.
This part is α-long and the height of the corresponding
vertex in the diagram is the width of P in the direction
−→qv rotated by π− θ and originating from a point on the
boundary of P such that it points at u.

We locate the origin of the vector −→qv at u and start to
rotate it. When it points to the inside of P , u is on the
lower chain. When it points outside of P , u is on the
upper chain. In the transitions between those two parts,
u is the rightmost or leftmost vertex of the region. The
height of the vertex is calculated as in the TS diagram.
Note that both the first and the third parts have the
same heights. The difference is that in the first part the
x coordinate is fixed and in the third part the vertex
moves from right to left as described above.

We now consider again a set of more than two points,
and focus on how different regions in the diagram inter-
act. Recall that the rotation axis “wraps around.”

Theorem 2 If points v, w ∈ S are equidistant from q,
then their regions are identical, except that one of them

is a shifted version of the other by ∠vqw along the ro-

tation axis.

Proof. The theorem holds as a direct consequence of
how the diagram is built. Its starting direction is arbi-
trary, and then the polygon is rotated by 2π. The only
difference between v and w is the relative orientation
relative to q. �

Clearly, if we move v further from q in the direc-
tion −→qv, then the region of v will be stretched up by
d(v′, q)/d(v, q), where v′ is the new location of v. The
next theorem summarizes the above discussion stating
the complexity of a single region.

Theorem 3 The boundary of every region contains m
curves, and each such curve is the concatenation of m
simple curves. The total number of intersections among

these curves is O(m2), which is the total complexity of

the boundary.

Proof. The first part of the theorem is a result of the
discussion following Theorem 1. Each polygon vertex
draws one curve. The second part of the theorem is the
result of Theorem 1. �
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Barequet and Dickerson [3] showed that in a TS
diagram every two regions intersect at most once.
What happens to an intersection point in the three-
dimensional diagram?

We focus on two segments s1 and s2 of the boundaries
of two different regions. Those segments intersect in a
point t. As we rotate the polygon s1 and s2 move, and so
does t while drawing a three-dimensional curve. We can
compute the movement of s1 and s2, so we can compute
the curve drawn by t as well. After rotating enough the
polygon, s1 and s2 will cease intersecting. Either s1 will
intersect a neighbor of s2, s2 will intersect a neighbor
of s1, or a neighbor of s1 will intersect a neighbor of s2.
A new curve will be drawn starting from the endpoint
of the last curve. We upper bound the number of such
events.

Theorem 4 Every intersection point of two regions

draws a curve which is made of Θ(m2) simple curves

in the worst case.

Proof. Omitted in this short version of the paper. �

There is another type of event, in which four points
are on the boundary of a copy of the polygon. This
event occurs when three regular intersection points co-
incide. Calculating those events is relatively easy. Ev-
ery intersection point has four other intersection points
as immediate neighbors along the boundary regions. A
trivial upper bound on the number of these events is
O(n3m4): we need to choose three points (the forth is
the one used to build the diagram) and three polygon
segments for those points. This is the best upper bound
we know. We show now an example in which there are
Ω(n3m) such events. We will use a regular polygon with
m = 4k (k ∈ N) segments. By rotating it we get k posi-
tions in which four segments are parallel to the x, y axes.
Those segments will cover the four points. This will give
us the factor Ω(m). We put n = 3j + 1 (j ∈ N) points
as follows. We put j points on the positive part of the
y-axis. The points are infinitesimally close to each other
at distance about 1 from the origin. We put the second
set of j close points around the location (0,−1). We put
the third set around (−1, 0). The single point that is
used to build the diagram is put at distance one from the
origin rotated counter-clockwise by the angle β from the
positive x-axis. By choosing a point from each set we
get four points that will be on the boundary of the poly-
gon. The vertical distance between the upper and lower
points is about 2. The horizontal distance between the
right and left points is 1+ ε+cosβ, where ε is infinites-
imally close to zero. Instead of rotating the polygon we
will rotate the points by the angle α. We choose α that
makes the horizontal distance and the vertical distance
equal, so as to enable us to cover the points. After ro-
tating the points the vertical distance is 2 · cosα. The

horizontal distance is (1+ε) cosα+cos (α + β). We get
(1 − ε) cosα = cos (α + β), and after simplification, we
get tan α = cotβ + (ε − 1)/ sinβ. If β is small, then α
is small too, so even when m is big and every polygon
segment is short we can choose β such that the segments
are long enough to cover the points.

Now we are ready to state the complexity of the TSR
diagram of a polygon P with m vertices with respect to
a set S of n points.

The TSR diagram is made of n three-dimensional re-
gions, the boundary of each of which contains O(m2)
simple curves. The total number of intersections among
these curves is O(m2) (Theorem 3). The regions inter-
sect each other O(n2) times. The intersection of two
regions is bounded by the xz-surface and by the bound-
aries of the two regions. The intersection of the bound-
aries is the concatenation of Θ(m2) simple curves in the
worst case (Theorem 4). Altogether we have O(n2m2)
simple curves, and O(n2m2) vertices. In the full version
of the paper we show that this bound is attainable in the
worst case. That is, we have Θ(n2m2) simple curves in
the worse case (see also [11, Theorem 2.6]). The number
of four-point intersection points is O(n3m4). We con-
clude that the complexity of the diagram is O(n3m4) in
the worst case.

4 Computation

We build a TS diagram at z = 0 (the original orienta-
tion). Then we use a sweep procedure to build the rest
of the diagram. For each region vertex and intersection
point we compute the next simple curve and the next
event. Whenever there is a change in an intersection
point, e.g, a simple curve ends and another curve starts,
we check if it coincides with its neighbors. At any point
in time there are O(n(n+m)) events in the event queue:
one for each TS vertex and two for each TS intersection
(the intersection point and the closest four-point inter-
section point involving that intersection point). There
are O(nm2) region-vertex events, O(nm2) structure-
change events, O(n2m2) region-intersection events, and
O(n3m4) complex intersection events, for a total of
O(n3m4) events. Each event is handled in O(log (nm))
time because it involves performing local computations
on one or two simple curves and standard operations on
the event queue. Every event causes the insertion of an-
other event to the event queue. This takes O(log (nm))
time for each event. The time complexity of the sweep
is therefore O(n3m4 log (nm)).

Although we can build the entire diagram, this may
be redundant for some applications. According to The-
orem 2, we can build a region for a point that is one unit
to the right of q. Then, all the real regions can be com-
puted on-demand from that region. Even that region
doesn’t have to be computed entirely. Our description
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of the diagram will include one TS diagram with only
one region for a point one unit to the right of q, and the
sorted set of O(m2) critical rotation angles (as defined
in Theorem 3).

Building this data structure takes O(m2 + n) time.
This is also the space that this algorithm requires.

5 Applications

We now describe a few applications of the TSR diagram.
We show how to solve some of the problems presented
in [3] when applied to the three-dimensional case.

Theorem 5 The smallest scale of P , if there exists a

translated and rotated version of P in contact with q
and containing the entire point set S, can be computed

in O(n3m4 log (nm)) time.

Proof. Define the count of a point t in the TSR dia-
gram to be the number of regions which contain t, in-
cluding regions that have t on their boundaries. Since t
represents a TSR of P , the count of t is the number of
points covered by P when it is translated, scaled, and
rotated according to t.

The problem can be solved while building the dia-
gram. When we build the first (lowest) TS diagram, we
will compute the counts of each region vertex and inter-
section point. We will also compute the count of each
region vertex and intersection point that we will reach in
the course of computing the diagram. The result will be
the the extreme point along the scale direction among
those points with count n − 1. �

Theorem 6 For a given scale α and a point q, the max-

imum number of points that can be contained in a copy

of P in contact with q and scaled by α can be determined

in O(nk2m2 log (km)) time, where k is the maximum of

contained points.

Proof. We scale the polygon by α and provide it as
input to the algorithm described in [6, Theorem 2]. �

Note that if the full diagram is given, we can also
solve this problem by traversing the diagram along the
z-axis and keeping the status of the line at scale = α
within the sweep-plane. Since all the simple curves
are y-monotone, each simple curve intersects the plane
scale = α (and hence, its intersection with the swept
plane) at most once. Therefore, the time complexity
of the algorithm is the time needed to traverse the dia-
gram. The time needed to traverse the diagram is com-
parable to its complexity, so the time complexity of the
algorithm is O(n3m4).

Theorem 7 Given a precomputed TSR diagram and a

point q, the smallest scale of P in contact with q and

containing at least k points can be computed in O(n3m4)
time.

Proof. We apply the following algorithm (see also [11,
§4]). Define the count of a point t in the TSR as in the
proof of Theorem 5. We observe that given a vertex of
the DCEL structure that describes the diagram and the
depth of a cell near it, we can traverse the neighboring
cells and know their depths. Therefore, all we need is a
starting point and its count. We traverse the diagram
starting from a point with a count of 1 which was com-
puted while building the diagram. Whenever we reach
a region vertex or an intersection point we compute its
count. We consider all the points with count at least
k and return the one that represents the smallest scale
(the one with highest y-value). The time needed to tra-
verse the diagram is comparable to its complexity, So
the time complexity of this algorithm is O(n3m4). �

We are not aware of any algorithm that can solve
the problem more efficiently and without building the
diagram explicitly.
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