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Abstract

We present a fixed-parameter algorithm for the Mini-
mum Convex Partition and the Minimum Weight Con-
vex Partition problem. On a set P of n points the algo-
rithm runs in O(2kk3n3 +n log n) time. The parameter
k is the number of points in P lying in the interior of
the convex hull of P .

1 Introduction

Let P denote a set of n points in the plane. By CH(P )
we denote the convex hull of P . To ease argumentation
we will assume that no three points in P are collinear
and no two points in P have the same x-coordinate.

A convex partition of P is a set E of straight line
segments with endpoints in P , called edges, such that
edges do not cross each other and partition CH(P ) into
a set R(E) of empty convex regions. A region is empty

if it does not contain a point of P in its interior. An
example of a convex partition is given in Figure 1. Note
that the edges of CH(P ) are contained in every convex
partition of P .

The Minimum Convex Partition problem (MCP) is to
compute a convex partition E of P such that the num-
ber of regions in R(E) is minimum. Lingas has shown
that the related problem of partitioning a polygon with
n vertices by diagonals into a minimum number of con-
vex pieces is NP-hard for polygons with holes [10]. For
polygons without holes Keil and Snoeyink give an O(n3)
time algorithm [8]. Fevens et al. have shown that MCP
can be solved in O(n3h+3) time if the points in P lie on
h nested convex hulls [3].

The Minimum Weight Convex Partition problem
(MWCP) is to compute a convex partition E of P such
that the total length of the edges in E is minimum.
Again we have the related problem of partitioning a
polygon with n vertices into convex pieces such that
the total length of the diagonals used for the parti-
tion is minimum. This related problem is NP-hard for
polygons with holes, as shown by Keil [7]. But it can
be solved in O(n4) time for polygons without holes as
Keil and Snoeyink note in [8]. There are also polyno-
mial time constant-factor approximation algorithms for
MWCP by Plaisted and Hong [11] and Levcopoulos and
Krznaric [9].
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Figure 1: A point set P and a convex partition of P .

However, in general MCP and MWCP seem to be
hard problems and we are not aware of any algorithms
solving these problems for every point set P in poly-
nomial time. One possible way to deal with this sit-
uation is to consider fixed-parameter algorithms. Such
an algorithm solves the problem under consideration in
O(f(k)p(n)) time. The function f is only allowed to
depend on the so called parameter k. This should be a
quantity associated with the input such that k can be
small even for large input size n. The function p must
be a polynomial of constant degree in the size of the
input. A problem that admits a fixed-parameter algo-
rithm for parameter k is called fixed-parameter tractable

with respect to parameter k. For more details about the
theory of parameterized complexity we refer to the book
of Downey and Fellows [2]. Note that the algorithm of
Fevens et al. in [3] is not a fixed-parameter algorithm
with respect to the number h of nested convex hulls,
since the degree of the polynomial in the bound on the
running time is not constant but depends on h.

Grantson and Levcopoulos present a fixed-parameter
algorithm for MCP running in O(k6k−5216kn) time [5].
For MWCP Grantson gives a fixed-parameter algorithm
running in O(k4k−8213kn3) time [4]. The parameter k

in both algorithms is the number of inner points in P ,
which are the points in P lying in the interior of CH(P ).
Recently the Traveling Salesman Problem (TSP) and
the Minimum Weight Triangulation problem (MWT)
have been shown to be fixed-parameter tractable with
respect to this parameter too. For TSP Deineko et al.
give an O(2kk2n) time algorithm [1] and for MWT Hoff-
mann and Okamoto present an O(6kn5 log n) time algo-
rithm [6].

In this paper we show that the approach of Hoffmann
and Okamoto for MWT can be adapted to yield a new
fixed-parameter algorithm for MCP and MWCP run-
ning in O(2kk3n3 +n log n) time. Keeping in mind that
fixed-parameter algorithms are proposed as a possible
way to cope with hard problems, the aim is at practical
and efficient algorithms. So our work could be seen as

1



v

u

w

v z

x1

x2

x3

x4

(a) (b)

Figure 2: Either we can cut off an empty triangle or we
have an x-monotone path starting at v.

just one further step to reach this goal for MCP and
MWCP.

2 Outline of the algorithm

Since our algorithm does not exploit any geometric
properties that depend on the objective function, it will
work for both problems under consideration. So let Eopt

be an optimal convex partition of P , that is a solution
for MCP or MWCP. Let v be the point in P with min-
imum x-coordinate. Then v is a vertex of CH(P ). We
will call the vertices of CH(P ) outer points for short.
The neighbors of an outer point are the two other outer
points to which it is connected by an edge of CH(P ).
Let u and w denote the neighbors of v. There are two
possible cases.

Case 1: The two edges between v and its neighbors
u and w are the only edges incident to v in Eopt. Then
the triangle with vertices u, v and w must be empty and
it suffices to find an optimal convex partition of P \{v}.
This situation is indicated in Figure 2(a).

Case 2: There are more than two edges incident to v

in Eopt. Then v is connected in Eopt to an outer point z

by an x-monotone path Π, that is a sequence of points
v = x0, x1, x2, . . . , xl, xl+1 = z from P such that xi has
smaller x-coordinate than xi+1 and there is an edge in
Eopt between xi and xi+1. The points x1, . . . , xl are in-
ner points. Such a path Π exists since the regions in
R(Eopt) are convex polygons and in a convex polygon
all interior angles are smaller than 180o. The path Π di-
vides P into two independent subproblems as indicated
in Figure 2(b). Note that the concept of x-monotone
paths forms the basis of the fixed-parameter algorithm
for MWT by Hoffmann and Okamoto [6].

One can imagine our algorithm building possible con-
vex partitions edge by edge. Thus in an intermediate
stage we have a set E of edges that have already been
selected to be in the convex partition and we check pos-
sible ways to add a further edge. The subproblems that
arise are the connected components of the set of points
that belong to CH(P ) but to none of the edges in E.
Such a connected component can be described by the
edges of E that form its boundary. As mentioned in
Section 1 we can suppose that E contains all the edges
of CH(P ). So in the description of subproblems we fo-
cus on those edges in E which are not edges of CH(P ).
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Figure 3: Examples for the types of subproblems.

In Figure 3 we give an example for each type of sub-
problem we will encounter. Inner points are indicated
by empty circles. Shading indicates that a region is
empty. We use solid lines for edges of CH(P ) and dot-
ted lines for those edges which are not edges of CH(P ).
Note that these dotted edges can be artificial in the
sense that they are not contained in the optimal convex
partition of P to be computed. But this is not a prob-
lem as long as we only want to know which edges must
still be added to partition the subproblem optimally. It
is only when combining solutions of subproblems that
we must take care not to include any artificial edges.
But this is not hard to manage.

We will say that a point q is between points p and
r, if q has larger x-coordinate than p and smaller x-
coordinate than r. In the same situation we will also
say that p is to the left of q and r is to the right of q.

From the case analysis above we derive the first two
types of subproblems. The other types arise when we
process subproblems. An important thing is that we
process subproblems in a way that only new subprob-
lems are created that have one of the seven listed types
too, at least after reflection on the x-/y-axis or rotation
by 180o. Let Ropt denote the set of convex regions in an
optimal solution of the subproblem under consideration.

Type 1: An x-monotone path Π is growing through
CH(P ) starting at an outer point v. The path Π ends
at an inner point x and it suffices to consider all possible
ways to extend Π by one edge beyond x. If we extend
Π to another inner point we obtain again a subproblem
of Type 1. If we reach an outer point we have created
two subproblems of Type 2.
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Type 2: Such a subproblem is defined by an x-
monotone path Π between two outer points v and z. In
processing the subproblem we will concentrate on point
z. Similarly we could discuss the situation around point
v but it suffices to do it only for one of the endpoints of
Π. Note that Π can degenerate to a single edge e with
endpoints v and z. Furthermore in such a situation edge
e can stem from cutting off an empty triangle and then
e would be an artificial edge as mentioned above.

Let us first discuss how we treat a subproblem of
Type 2 where indeed Π consists only of a single edge
e. Let w denote the neighbor of z present in the sub-
problem. There is a unique region R in Ropt such that
e is an edge of R. If w is a vertex of R then the triangle
with vertices v, z and w is empty and we consider the
subproblem of Type 2 obtained by cutting off this tri-
angle. If w is not a vertex of R there is an inner point x

such that the straight line segment between z and x is
an edge of R. So we consider all the subproblems where
z is connected by an edge to an inner point x and the
triangle with vertices v, z and x is empty. This leads us
to subproblems of Type 3.

Now we can assume that Π consists of at least two
edges. If all these egdes belong to the boundary of a sin-
gle region in Ropt then Π and the straight line segment
with endpoints v and z form the boundary of an empty
convex polygon. We obtain a subproblem of Type 2
by substituting a single (artificial) edge between v and
z for Π. Otherwise there are essentially two possible
cases. The first case is that there are two inner points a

and b on Π such that a is to the left of b, the part of Π
between a and b belongs to the boundary of a single re-
gion R in Ropt, a is the leftmost point of R and b is the
rightmost point of R. This leads us to subproblems of
Type 5. The second case is that there is an inner point
a on Π such that the part of Π between a and z belongs
to the boundary of a single region R in Ropt and a is
the leftmost point of R. This way we get subproblems
of Type 6.

Type 3: We grow the boundary of a region R in Ropt

edge by edge. We extend this boundary at the point x

by adding a new edge to a point x′. We consider each
suitable point x′, in particular the triangle with vertices
v, x and x′ must be empty. If x′ is an inner point we
obtain again a subproblem of Type 3. So let’s assume
x′ is an outer point. Depending on the shape of the
part Ψ of the boundary of R from z to x′ we are led to
different types of subproblems. If all inner points on Ψ
are between z and x′ we obtain a subproblem of Type
2. If there is an inner point on Ψ to the right of z but
no inner point on Ψ to the left of x′ or there is an inner
point on Ψ to the left of x′ but no inner point on Ψ
to the right of z then we obtain a subproblem of Type
7. If there is an inner point on Ψ to the right of z and
an inner point on Ψ to the left of x′ then we obtain a

subproblem of Type 4. Finally if x′ 6= v we obtain a
second subproblem of Type 2 by adding an (artificial)
edge between the outer points x′ and v.

Type 4: We have grown a part Ψ of the boundary
of a region in Ropt and have reached an outer point v.
The leftmost point a and the rightmost point b on Ψ are
inner points. From a we grow an x-monotone path Π
which we extend edge by edge to the left. We consider
each point x′ to the left of x and connect the current
endpoint x of Π to x′ by an edge. If x′ is an inner point
we obtain again a subproblem of Type 4. If x′ is an
outer point we obtain two subproblems, one of Type 2
and another one of Type 7.

Type 5: We grow the boundary of a region R in
Ropt edge by edge. Point a is the leftmost point of R

and point b is the rightmost point of R. We extend the
boundary of R at x by adding an edge to a point x′.
We consider each suitable point x′ that is between x

and b, in particular the triangle with vertices b, x and
x′ must be empty. If x′ is an inner point we obtain
a subproblem of Type 5. If x′ is an outer point we
obtain two subproblems: a subproblem of Type 2 and
a subproblem of Type 6. The subproblem of Type 6 is
created by adding an (artificial) edge between x′ and b.
Finally we consider the subproblem of Type 2 obtained
by adding an edge connecting x and b.

Type 6: Here again we grow the boundary of a region
R in Ropt edge by edge. We must extend this boundary
at the point x by adding a new edge to a point x′.
We consider each suitable point x′, in particular the
triangle with vertices z, x and x′ must be empty. If
x′ is an inner point we obtain again a subproblem of
Type 6. So suppose x′ is an outer point. If x′ is the
rightmost point among the points on the part of the
boundary of R from a to x′ then we obtain a subproblem
of Type 2. Otherwise we obtain a subproblem of Type
7. Furthermore if x′ 6= z we create a second subproblem
of Type 2 by adding an (artificial) edge connecting the
outer points z and x′.

Type 7: We have grown a part Ψ of the boundary
of a region in Ropt and have reached an outer point z.
The rightmost point b of Ψ is an inner point. From b we
grow an x-monotone path Π. We consider each point x′

to the right of the current endpoint x of Π and add an
edge connecting x and x′. If x′ is an inner point we
obtain a subproblem of Type 7. Otherwise we obtain
two subproblems of Type 2.

Now the collection of types of subproblems is com-
plete and we have outlined how to process each type of
subproblem. Note that when processing a subproblem
we indeed create only smaller subproblems that have
one of the seven listed types too.
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3 Analysis

We want to employ the dynamic programming tech-
nique to avoid re-computation of optimal convex par-
titions for subproblems. Then we could assume that we
can look up optimal convex partitions for the subprob-
lems we have already computed in a table in constant
time. Of course, such an approach only pays off if the
number of distinct subproblems can be bounded appro-
priately. So first we analyze the number of subproblems
for each of the seven types listed in Section 2.

A key observation of Hoffmann and Okamoto in [6]
is that an x-monotone path is uniquely defined by the
points of P on the path. Now our types of subproblems
are not only defined by x-monotone paths. However, we
can obtain bounds on their number in a similar way. We
will discuss this only for subproblems of Type 5. The
same bound can be shown to hold for the other types
as well by similar arguments.

So, how many subproblems of Type 5 are there?
There are O(n2) possible choices for the outer points v

and z. When we have any subset S of the inner points
in P we can number them x1, x2, . . . , xl according to
increasing x-coordinates. There are O(l2) possible ways
to choose xi = a and xj = b such that i < j. A choice
for a and b can only lead to a subproblem of Type 5
if the inner points a = xi, xi+1, . . . , xj−1, xj = b are
the vertices of an empty convex polygon. But then this
empty convex polygon and therefore the boundary of it
is uniquely defined. By the observation of Hoffmann and
Okamoto the x-monotone path from v to a is uniquely
defined by v, x1, . . . , xi and the x-monotone path from b

to z is uniquely defined by xj , . . . , xl, z. Since x1, . . . , xl

are inner points we have l ≤ k. To summarize: there
are only O(n22kk2) subproblems of Type 5.

Finally we have to give a bound on the time needed to
compute an optimal convex partition for a subproblem.
Since we essentially grow x-monotone paths or bound-
aries of regions in the optimal convex partition edge by
edge and we use dynamic programming, O(n) time suf-
fices in most cases. Only when we have to deal with a
subproblem of Type 2 we might consider O(k2) subprob-
lems of Type 5. Thus we get a time bound of O(n+k2).
However this is only valid under the assumption that we
use O(1) time to create a subproblem. To achieve this
we preprocess P in O(kn3) time using O(n3) space such
that for each triangle with vertices in P we can look up
in O(1) time whether it is empty.

Now we can state our result. The n logn-term in the
bound on the running time is for checking whether P

contains any inner points at all.

Theorem 1 Given a set P of n points in the plane,

we can compute solutions to MCP and MWCP for P in

O(2kk3n3 + n logn) time using O(2kk2n2 + n3) space.

The parameter k is the number of inner points in P .

4 Conclusion

It is not hard to adapt our fixed-parameter algorithm
such that it will work in situations where in addition to
the point set P a set of edges Ein is given as part of
the input and an optimal convex partition of P among
those containing Ein must be computed. With a suit-
able preprocessing of Ein we can achieve the same time
bound as in Theorem 1.

It seems unlikely that we can improve the 2k-term in
the bound on the running time significantly only relying
on a concept based on x-monotone paths.

From the viewpoint of parameterized complexity the
question whether the problems under consideration ad-
mit a reduction to a problem kernel [2] suggests itself.
Since we can always find a convex partition E of P such
that R(E) contains only O(k) regions, MCP seems to
be a good candidate for such a reduction.

Last but not least we mention the important issue
of implementation and experimentation. Do our purely
theoretical results really lead to practical and efficient
algorithms?
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