
A Fast Algorithm for Point Labeling Problem

Sasanka Roy∗ Subhasis Bhattacharjee∗ Sandip Das∗ Subhas C. Nandy ∗

Abstract

In the map labeling problem, we are given a set P =
{p1, p2, . . . , pn} of point sites distributed on a 2D map.
The label of a point pi is an axis-parallel rectangle of
specified size. The objective is to label maximum num-
ber of points on the map so that the placed labels are
mutually non-overlapping. Here, we investigate a spe-
cial class of map labeling problem where (i) the height
of the label of each point is the same but its length may
be different from the others, (ii) the label of a point pi

touches the point at one of its four corners and (iii) it
does not obscure any other point in P . We describe an
efficient heuristic algorithm for this problem which runs
in O(n

√
n) time in the worst case. We run our algo-

rithm as well as the algorithm proposed in [14] on the
available benchmarks [13]. The results produced by our
algorithm is same as that of [14] in most of the cases,
and is one less in few cases. But the time taken by our
algorithm is much less than [14].

1 Introduction

Labeling a point set is a classical problem in the ge-
ographic information systems, where the points repre-
sent cities on a map which need to be labeled with city
names. It has a variety of practical applications as men-
tioned in The ACM Computational Geometry Impact
Task Force report [2].

In general, the label placement problem includes po-
sitioning labels for area, line and point features on a
2D map. A good labeling algorithm has three basic re-
quirements: (i) label of a site should touch the site at
its boundary, (ii) it must not obscure the other sites on
the map, and (iii) labels of two sites must not overlap.
Many other aesthetic requirements for map labeling are
listed in [6]. Given the basic requirements, two major
types of problems are considered: (1) label as many sites
as possible, and (2) find the largest possible size of the
label such that all the sites can be labeled in a non-
overlapping manner. In general, both of these problems
are NP-hard [4]. In this paper, we shall consider a spe-
cial case of the first variation of the point-site labeling
problem.

Let P = {p1, p2, . . . , pn} be a set of n points in the
plane. For each point pi ∈ P , we have a rectangular

∗Advanced Computing and Microelectronics Unit, Indian Sta-

tistical Institute, Kolkata - 700 108, India

label ri of specified size. The label of a point pi must be
placed parallel to the coordinate axes, and must contain
pi on one of the four corners of ri. A label is said to be
valid if it does not obscure any other point of P . A feasi-
ble solution is a family of axis-parallel rectangles (labels)
R = {r1′ , r2′ , . . . , rk′}, each i′ ∈ {1′, 2′, . . . , k′} is differ-
ent and ri′ is represented by a tuple {(pi′ , xi′) | pi′ ∈ P,

xi′ ∈ {top-left, top-right, bottom-left, bottom-right}
and ri′ is placed with pi′ at its xi′ -th corner}, such that
the members in R are mutually non-overlapping. In
other words, if we consider a graph whose nodes corre-
spond to all possible valid labels, and an edge between a
pair of nodes indicates that the corresponding two labels
overlap, then a feasible solution correspond to an inde-
pendent set of that graph. In subsequent discussions,
we will refer this graph as label graph. The objective
of the label placement problem is to find the maximum
independent set of the label graph [1].

In [1], an O(logn)-approximation algorithm is pro-
posed for this problem which runs in O(nlogn) time.
An α-approximation algorithm produces a solution of
size at least ∆

α
, where ∆ is the size of the optimal

solution. In particular, if the labels are of the same
height, a dynamic programming approach is adopted to
get a (1 + 1

k
)-approximation algorithm which runs in

O(nlogn + n2k−1) time [1]. This case is of particular
importance since it models the label placement prob-
lem when all labels have the same font size. Note that,
if each point is allowed to appear at its one specific cor-
ner (say top-left), then the maximum independent set
of the label graph can easily be obtained in O(nlogn)
time [10]. A slightly generalized version of this problem,
where a point is allowed to appear at either top-left or
bottom-left corner of its label, becomes NP-complete.
An O(nlogn) time heuristic algorithm is proposed [10],
but its performance is dominated by that of [14].

The point labeling with sliding labels is introduced in
[7], where the point pi can assume any position on the
boundary of ri. The problem has shown to be NP-hard,
and using plane sweep paradigm, a 2-approximation al-
gorithm has been presented whose time complexity is
O(nlogn). The label placement problem in the slider
model has been extended for the map containing several
polygonal obstacles, and the objective is to label a set
of n point sites avoiding those obstacles [12]. The time
complexity of this algorithm is O((n + m)log(n + m)),
where m and n are respectively the total number of ver-
tices of all the polygons, and the number of point sites

1

to be labeled. In [9], a decision-theoretic version of the
map labeling problem is introduced where the sites are
horizontal and vertical line segments. Each label has
unit height and is as long as the segment it labels. The
problem is to decide whether it is possible to label all the
sites. The problem is transformed to the well known 2-
satisfiability problem, and an algorithm for this decision
problem is proposed which runs in O(n2) time. Later,
in [11], the time complexity was improved to O(nlogn).
Good heuristics are proposed for labeling arbitrary line
segments and polygonal areas [3]. In [14], a heuristic
algorithm for the point labeling problem is proposed. It
produces near-optimal solution in O(nlogn+ |E|) worst
case time, where E is the set of edges in the label graph,
and it may be O(n2) in the worst case.

Our proposed heuristic algorithm exploits the graph-
theoretic properties of the label graph, it runs in
O(n

√
n) time. Experimental results indicate that the

solutions produced by our algorithm is same as that of
[14] for most of the benchmark examples [13], and in a
few cases is it less than [14] by only one. The merit of
our algorithm is that it terminates in less than a minute
for instances of size 1000, whereas the algorithm in [14]
takes much time for similar examples. Thus, our algo-
rithm can be utilized in practical environment for pro-
ducing good quality solutions.

2 Algorithm

We consider the general problem where a site can ap-
pear at any of the four corners of its label. Thus, our
objective is to compute the maximum independent set
of the general label graph. We do it in two phases. In
Phase I, we use four different configurations of valid la-
bels as shown in Figure 1. In each configuration, a point
can appear in three specified corners of its label. The
rationale of choosing such configurations is that, we can
easily identify cliques of the corresponding label graph
during the plane sweep in horizontal/vertical direction,
which leads to a near-optimal solution of the maximum
independent set problem of its corresponding subgraph.
For each configuration, we compute two such solution
sets by executing plane sweep in horizontal and vertical
directions. Thus, we have 8 different independent sets.
In Phase II, we apply a merge pass on these 8 solution
sets to compute the final solution, i.e., a large indepen-
dent subset of nodes in the general label graph. It is
observed that, in all the cases the solution is almost of
same size as that of the best solution of the problem
proposed in [14].

2.1 Phase I

Consider the configuration in Figure 1(a). For each
point pi ∈ P , draw the three possible labels, and for
each of them test for its validity. Next, sort the valid

Configuration I Configuration II

Configuration III Configuration IV

Figure 1: Possible configurations of valid labels

labels with respect to the y-coordinates of their horizon-
tal boundaries, and perform a horizontal line sweep from
top to bottom for generating a set of non-overlapping
labels, called the independent set, and is denoted by
h list1. Note that, if the top-left label for a point pi is
selected in the independent set, then the other two la-
bels will not appear in the independent set. However, if
this label can not be chosen for the presence of a label of
some other point, then one of the remaining two labels
of pi are tested for inclusion in the independent set. We
also compute another independent set, called v list1, by
sweeping a vertical line from right to left. This needs
sorting of the vertical boundaries of the valid labels with
respect to their x-coordinate.

Similarly, for the configurations in Figures 1(b), 1(c)
and 1(d), horizontal line sweeps are executed from
bottom-to-top, top-to-bottom and bottom-to-top re-
spectively, and the name of the corresponding indepen-
dent sets are h list2, h list3 and h list4 respectively.
The directions of the vertical line sweep for Figures 1(b),
1(c) and 1(d) are right-to-left, left-to-right and left-to-
right respectively. The corresponding independent sets
are v list2, v list3 and v list4 respectively.

2.2 Phase II

In this phase, our objective is to compute an estimate
of the maximum independent set of the label graph
by merging the independent sets h list1, . . . , h list4,
v list1, . . . , v list4 obtained in Phase I.

Consider two independent sets, say U and W of the
same label graph, and obtain a graph GB(U, W ; E) as
follows: put edges between nodes in U and W such that
for an edge (u, w) ∈ E, we have u ∈ U , w ∈ W and
the labels corresponding to u and w overlap. Needless
to say, the graph GB is bipartite since an edge can not
exists between a pair of nodes in U (resp. W). The size
of the maximum independent set of GB is greater than
or equal to max(|U |, |W |). We can use the algorithm in
[8] to obtain a maximum independent set of a bipartite
graph in O(|E|) if the maximum matching of the graph

2

v_list1 v_list2 v_list3 v_list4

v_list’

v_list’’

v_list*

Independent set of label graph

h_list1 h_list2 h_list3 h_list4

h_list’

h_list’’

h_list*

Figure 2: Hierarchical merging in Phase 2

GB is given. The maximum matching of a bipartite
graph can be obtained in O(|E|

√

|U | + |W |) time [5].

Lemma 1 If U and W corresponds to two lists in

{h list1, h list2, h list3, h list4, v list1, v list2, v list3,

v list4}, then the GB is a planar graph.

Proof. We propose a construction technique of the pla-
nar embedding of the graph GB to prove the result.

Consider a label α ∈ U . Let it intersects with
β1, β2, . . . , βk ∈ W . Since the graph GB is bipartite,
the regions {α ∩ βi, i = 1, 2, . . . , k} and (α − ∪k

i=1
βi)

are mutually non-intersecting. As the labels {βi, i =
1, 2, . . . , k} are not intersecting even at their boundaries,
the region (α − ∪k

i=1
βi) is non-empty.

Again, (i) if a label βi spans both the horizontal
boundaries of α then it contains exactly one of the ver-
tical boundaries of α (since α is a valid label and of
same height with βi), and (ii) if βi contains portions of
two vertical boundaries of α then one of the horizontal
boundaries of α must lie inside βi. Thus, (α − ∪k

i=1βi)
is a connected region.

Thus, we place the node (point) corresponding to α,
called vα, inside (α − ∪k

i=1βi). Note that, we can reach
from vα to a point inside α∩βi by a path π(α, βi) which
completely stays inside α and does not pass through any
of the labels βj , j = 1, 2, . . . , k except βi. In other words,
the paths π(α, βi), i = 1, 2, . . . , k are non-intersecting.

Thus in the embedding of GB , we can place a node
vα for each member α ∈ U . Similarly, for each member
in W , we place a node. If the labels corresponding to
a node α ∈ U intersects with β ∈ W , we can draw the
edge (vα, vβ) by concatenating the paths π(α, β) and
π(β, α). This edge will not intersect any other labels
except the labels corresponding to α and β. This proves
that any two edges in the graph GB do not intersect. �

Let us consider a permutation of {h listi, i =
1, 2, 3, 4} and {v listi, i = 1, 2, 3, 4}, and hierarchically
merge these eight independent sets as follows to get a
larger independent set of the label graph.

The first two members in the permutation of h lists
are named as U and W , and the independent set of

GB is computed. Name it h list′. Similarly h list′′

is computed by merging the last two members of
the permutation of h lists. Finally, h list∗ is com-
puted by merging h list′ and h list′′. Similarly,
v list′, v list′′ and then v list∗ is computed. Fi-
nally, h list∗ and v list∗ are merged to get the in-
dependent set of the label graph (see Figure 2 for
the demonstration).

Note that, there may be three different permutations
of h lists which may generate different h list∗s. Same
thing holds for the v lists also. Thus, we need to inspect
9 different (h list∗, v list∗) pairs. Finally, we report one
of these 9 solutions which is having maximum cardinal-
ity.

2.3 Complexity analysis

Theorem 2 The time complexity of our algorithm is

O(n
√

n) in the worst case.

Proof. The generation of eight lists of independent sets
in Phase I needs O(nlogn) time. Each merging phase
can be executed in O(n

√
n) time, since the number of

edges in GB is O(n) (by Lemma 1). For one particular
permutation of h lists and v lists, we need to execute
the merge algorithm seven times (see Figure 2). As we
need to consider nine different permutations of h lists
and v lists, the result follows. �

3 Experimental results

We have executed this algorithm on many randomly
generated examples and on all the benchmark examples
available in [13]. The experimental results appear in
Table I. In most of the cases, the results obtained by
our algorithm are same as that of [14]. In very few
cases, our algorithm produces a solution which is 1 or
2 less than that of [14]. For some example, we could
obtain the optimum solution, which are also presented
in the table. The run time requirement of our algorithm
is also mentioned in the table. We like to mention
that, the running time of (our implementation of) the
algorithm in [14] needs very high time in comparison

3

Table 1: Experimental results

Examples No. of height Opt. soln. Our Algorithm
sites soln. in [14] soln. time (in sec.)

Tourist shops 357 4 *** 180 179 0.3317
in Berlin 5 *** 152 151 0.7868
German rail- 366 4 347 347 346 0.2250
way stations 5 *** 332 332 0.1763
American 1041 4 1041 1041 1041 0.5000
cities 5 1041 1041 1041 0.5000
Drill holes 250 604 *** 249 249 0.1336
in Munich 3000 521 3000 3000 2998 3.3842

19461 5000 *** *** 11049 7.1452

*** indicates optimum solution can not be found for that example.

to that of ours. There are many other examples in [13]
for which our algorithm can give solution very quickly
but the algorithm of [14] can not terminate in one day.

Acknowledgment: We are thankful to Dr. Alexan-
der Wolff for providing us the benchmark examples.

References

[1] P. K. Agarwal, M. van Kreveld and S. Suri, Label place-

ment by maximum independent set in rectangles, Com-
putational Geometry: Theory and Applications, vol. 11,
pp. 209-218, 1998.

[2] B. Chazelle et at, Application challenges to com-
putational geometry: CG impact task force report,
http://www.cs.princeton.edu/c̃hazelle/taskforce
/CGreport.ps, 1996.

[3] S. Edmondson, J. Christensen, J. Marks, and S.
Shieber, A general cartographic labeling algorithm, Car-
tographica, vol. 33, no. 4, pp. 13-23, 1997.

[4] M. Formann and F. Wagner, A packing problem with

applications to lettering of maps, Proc. 7th. Annual ACM
Symp. on Computational Geometry, pp. 281-288, 1991.

[5] J. E. Hopcroft and R. E. Karp, An n

5

2 algorithm for

maximum matching in bipartite graphs, SIAM J. Com-
puting, vol. 2, pp. 225-231, 1973.

[6] E. Imhof, Positioning names on maps, The American
Cartographer, vol. 2, no. 2, pp. 128-144, 1975.

[7] M. van Kreveld, T. Strijk and A. Wolff, Point labeling

with sliding labels, Computational Geometry: Theory and
Applications, vol. 13, pp. 21-47, 1999.

[8] T. Kashiwabara, S. Masuda, K. Nakajima and T. Fu-
jisawa, Generation of maximum independent sets of a

bipartite graph and maximum cliques of a circular-arc

graph, Journal of Algorithms, vol. 13, pp. 161-174, 1992.

[9] C. K. Poon, B. Zhu and F. Chin, A polynomial time

solution for labeling a rectilinear map, Proc. 13th. ACM
Symp. on Computational Geometry, pp. 451-453, 1997.

[10] S. Roy, P P. Goswami, S. Das, S. C. Nandy, Optimal al-

gorithm for a special point-labeling problem, Information
Processing Letters, vol. 89(2), pp. 91-98, 2004.

[11] T. Strijk and M. van Kreveld, Labeling a rectilinear map

more efficiently, Information Processing Letters, vol. 69,
pp. 25-30, 1999.

[12] T. Strijk and M. van Kreveld, Practical extension of

point labeling in the slider model, 7th. Int. Symp. on Ad-
vances in Geographical Information Systems, (ACM-GIS
’99), pp. 47-52, 1999.

[13] A. Wolff, General Map Labeling Webpage,
http://www.math-inf.uni-greifswald.de/map-
labeling/general/.

[14] F. Wagner, A. Wolff, V. Kapoor and T. Strijk, Three

rules suffice for good label placement, Algorithmica, vol.
30, pp. 334-349, 2001.

4

