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Abstract

This paper presents an experimental study on sev-
eral compaction algorithms for orthogonal drawings
of graphs. We concentrate on algorithms that mini-
mize the area, and compare them with other repre-
sentative compaction algorithms in the state of the
art. In particular, we propose a new exact algo-
rithm that minimizes the total edge length subject
to the optimization of the area, and experimentally
prove that it is the best choice in many cases.

1 Introduction

A planar orthogonal drawing Γ of a planar graph
G is a crossing-free drawing of G such that each
vertex is mapped to a point of an integer grid and
each edge e is mapped to a sequence of horizontal
and vertical segments: a left or a right turn on e

is called a bend. Figure 1 shows a planar orthog-
onal drawing with two bends. It is known that G

admits a planar orthogonal drawing if and only if
it is a 4-planar graph, that is, the number of edges
incident on any vertex of G is at most four. An
orthogonal representation H of G is an equivalence
class of planar orthogonal drawings of G such that:
(i) For each edge (u, v) of G all the drawings of the
class have the same sequence of left and right turns
along (u, v) while moving from u to v; (ii) For each
vertex v of G and for each pair {e1, e2} of clockwise
consecutive edges incident on v, all the drawings of
the class determine the same angle between e1 and
e2.

We say that a drawing Γ that belongs to H is a
planar orthogonal drawing of G that preserves H .

A popular and effective technique for computing
a planar orthogonal drawing of a 4-planar graph
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G is the so called topology-shape-metrics approach,
introduced by Tamassia in [8]. According to this
approach, the drawing is computed in three consec-
utive steps. In the first step a planar embedding
for G is determined. In the second step an orthog-
onal representation H of G is computed within the
planar embedding found in the previous step. In
the third step a final drawing of G that preserves
H is computed, by assigning integer coordinates to
vertices and bends.

Figure 1: An orthogonal drawing with two bends.

During the third step of the topology-shape-
metrics approach, there are some important aes-
thetic requirements that are usually taken into ac-
count in order to improve the quality of the drawing.
Two of the most important are the area occupied by
the drawing and the total length of the edges; both
of them should be kept as small as possible. For
this reason, the third step is usually called the com-

paction step. Unfortunately, it is not always pos-
sible to minimize both the area and the total edge
length of an orthogonal drawing at the same time,
while preserving a given orthogonal representation
H , even if H has only rectangular faces. Also, com-
pacting an orthogonal representation in such a way
that it has either a minimum area or a minimum
total edge length is an NP-hard problem [7].

There are several algorithms proposed in the lit-
erature for the compaction step of the topology-
shape-metrics approach. Klau and Mutzel [6] pro-
posed the first exact (exponential) compaction al-
gorithm to minimize the total edge length, which is
based on a ILP formulation of the problem. In [5],
Klau et al. extended the algorithm to orthogonal



representations with vertex labels. Recently, several
exact (exponential) compaction algorithms for or-
thogonal representations with both vertex and edge
labels have been proposed in [1]. Each of these algo-
rithms is devoted to the minimization of one of the
following aesthetic requirements: total edge length,
width, height, or area. In particular, all these al-
gorithms can also be used for unlabeled graphs; in
this case, the model adopted for total edge length
minimization reduces to the ILP model of Klau and
Mutzel, and the algorithm that minimizes the area
provides the first exact algorithm known in the lit-
erature for this problem.

Several experimental works have also been pre-
sented in the literature to compare the perfor-
mances of orthogonal compaction algorithms, both
in terms of running time and in terms of drawing
quality. In particular, Klau and Mutzel [4] pre-
sented an extensive experimental study that com-
pares the effectiveness of different orthogonal com-
paction heuristics in terms of total edge length,
evaluating the gap with respect to the optimum
solutions computed with their exact algorithm.
In [1] experiments are presented focusing on la-
beled graphs, and only preliminary results are dis-
cussed about the compaction problem for unlabeled
graphs.

In this paper we concentrate on unlabeled graphs,
and compare the exact compaction algorithm for
area minimization described in [1] against an exact
algorithm for total edge length minimization and
against one of the best known compaction heuristics
for orthogonal representations [2]. Further a new
mixed optimization approach is investigated. From
our analysis two main indications arise:

• The choice of the “best” compaction algorithm
strongly depends on the density (number of
edges over number of vertices) of the graph.
In particular, for graphs with high density and
number of vertices up to 100, the exact algo-
rithms are preferred to the heuristic in many
cases (also considering the running time).

• A mixed optimization algorithm that com-
putes orthogonal drawings of minimum area
and then, with lower priority, of minimum to-
tal edge length, provides a very good trade-
off in terms of different aesthetic requirements.
Also, for medium size graphs, the computation
of this mixed algorithm is rather fast.

2 Compaction Algorithms and Test Suite

We compared four distinct algorithms for compact-
ing an orthogonal representation H ; they are listed
below:

• H-FLOW: It is the O(n2 log n)-time heuristic de-
scribed in [2], which computes a drawing of H

by first decomposing all faces of H into turn-

regular sub-faces (see [2] for details), and then
applies flow techniques for minimizing the area
and the total edge length as much as possible.
The drawing is further refined by applying a
one-dimensional compaction algorithm as post-
processing.

• M-TEL: It computes a drawing of H having the
minimum total edge length. The algorithm
runs on CPLEX, according to the ILP model
described in [1] for labeled graphs. In our case,
since the graphs are unlabeled, this model is
substantially equivalent to that given in [6].

• M-AREA: It computes a drawing of H having
the minimum area. This algorithm, described
in [1], iterates over a sub-routine, Min-Width,
that suitably computes a drawing with mini-
mum width within a given height. Min-Width

again runs on CPLEX, based on an ILP model
that is a variant of that used for M-TEL, where
the objective function is redefined.

• M-AREA-TEL: It is a multi-objective optimiza-
tion algorithm that computes a drawing of H

with minimum area A and with minimum to-
tal edge length within A. To implement this
algorithm, we slightly modified the objective
function of sub-routine Min-Width in algorithm
M-AREA, in such a way that it optimizes the to-
tal edge length with a lower priority with re-
spect to the minimum width.

All the algorithms above have been tested on the
following test suites of graphs1.

• Random-Graphs It is known that the difficulty
of the orthogonal compaction problem is af-
fected by the density of the graph. Indeed, or-
thogonal representations of low-density graphs
usually have a large number of possible com-
paction solutions, and then they represent hard

1The test suite is available on-line at
http://www.diei.unipg.it/PAG PERS/binucci/binucci.htm.
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instances for exact algorithms in terms of the
required running time. The opposite behavior
is typically observed for high-density graph in-
stances. To understand if this behavior is also
true for compaction algorithms that minimize
the area, we randomly generated 900 (non-
planar) graphs having number of vertices in the
range [10, 100], density in the set {1.2, 1.4, 1.6},
and having vertex-degree at most four. The
generation was done with a uniform probabil-
ity distribution, with the procedure in [1].

• Real-Graphs To evaluate the performances of
the compaction algorithms also on graphs gen-
erated from real instances, we extract from the
popular test suite introduced in [3] the graphs
that have vertex-degree at most four. In this
way we collected 647 graphs. Most of these
graphs have a density lower than 1.2 and their
number of vertices is up to 56.

Both the Random-Graphs and the Real-Graphs

are not planar in general. We ran our algorithms
on the same orthogonal representations computed
by first planarizing the graphs and then applying
on them the bend-minimum algorithm described by
Tamassia in [8]. The algorithms have been tested
on a PC Pentium III, 800MHz, 512MB RAM.

3 Experimental Results

Figure 2 shows the quality of the drawings
computed with algorithm H-FLOW, M-AREA, and
M-AREA-TEL in terms of total edge length, on the
Random-Graphs; the optimum value for the total
edge length has been computed with M-TEL. In par-
ticular, we observe how the gap percentages are
strongly affected by the graph density, and how
the largest gap values are on graphs with low den-
sity. Also, we remark how H-FLOW is about 2-times
better than M-AREA to approximate the optimum
total edge length value, while M-AREA-TEL outper-
forms the other two, and is very close to the opti-
mum in most cases. Combining these results with
those in Figure 3, we can derive that M-AREA-TEL

is the best choice for a good trade-off between min-
imum area and minimum total edge length. This
observation is reinforced by the results on the run-
ning time. Indeed, Figure 4 shows how M-AREA-TEL

runs rather fast on all instances, and for the low-
density graphs it is even faster than M-AREA. This

is because, the multi-objective function in the sub-
routine Min-Width significantly restricts the num-
ber of candidate solutions explored by the algo-
rithm. We also observe that for high-density graphs
H-FLOW requires more computation time than the
exact algorithms (for density 1.6 it takes the same
time as M-AREA-TEL), while it is much faster on low-
density graphs. Of course, for large graphs with
some thousand of vertices, H-FLOW remains feasi-
ble and always outperforms the exact algorithms in
terms of running time.
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Figure 2: Random-Graphs: Average gap between the
minimum total edge length and the total edge length
of the drawings computed with (a) H-FLOW, (b) M-
AREA, (C) M-AREA-TEL, for the three density values.
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Figure 3: Random-Graphs: Gap between the minimum
area and the area of the drawings computed with (a)
H-FLOW, (b) M-TEL, for the three density values.

The results on the Real-Graphs confirm
the behavior of the algorithms obtained for
Random-Graphs, although the average gaps increase
(sometime significantly) due to the fact that the
Real-Graphs have density lower than 1.2 in most
cases (most instances have a tree-like structure).
For reasons of space, we omit the charts.
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Figure 4: Random-Graphs: Average CPU-times of the
algorithms in seconds, for graphs with density (a) 1.2,
(b) 1.4, (c) 1.6; M-AREA-TEL, H-FLOW take the same time.
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