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Abstract

Cartographers collect more data than they need, and
so must simplify coastlines, boundaries, and other lin-
ear features to display a map at a given scale. Many
simplification methods, however, can introduce inter-
sections that were not originally present, corrupting the
features.

Kulik suggests a simple shortcut operation for polyg-
onal lines: remove a point pi and connect its former
neighbors pi−1 and pi+1 directly, but only if the tri-
angle �pi−1pipi+1 is empty of other points. We show
geodesic triangulations support shortcut operations and
triangle tests in O(

log2 n
)

time for connected subdivi-
sions of size n. This can be integrated into simplification
methods that support cartographic preferences so that
they can also avoid self-intersection.

1 Introduction

There are many simplification algorithms in the litera-
ture of geographic information systems (GIS) [1], com-
puter vision [11], and computational geometry. The
practical literature typically presents heuristics that run
in linear or near linear time, while the computational
geometry literature tends toward optimal simplification
under various criteria (e.g. minimum error for a given
number of segments, or minimum number of segments
for a given error) using algorithms that run in quadratic
to cubic time [9]. These algorithms are compared by
Heckbert and Garland [8].

In cartographic applications, self-intersections usually
indicate errors in digitization or processing [13]. Nev-
ertheless, most algorithms simplify collections of polyg-
onal lines by considering each in isolation, and run the
risk of introducing intersections and topological changes
in the data. The cartographers’ favorite algorithm [4]
can even introduce self-intersections within one polygo-
nal line.

A few simplification algorithms have been developed
in computational geometry that preserve map topol-
ogy. De Berg et al. [3] give a method that simplifies
an n-point polygonal line without passing over itself or
over m specified points in O(

n(n + m) log n
)

time. Es-
tkowski and Mitchell [5] give a heuristic for simplifying
parallel lines, such as elevation contours, in quadratic

time. Others have used the Voronoi diagram to iden-
tify regions in which it is safe to perform simplification
without creating intersections [12, 14].

Unfortunately, Estkowski and Mitchell [5] argue that
requiring simplicity in subdivision simplification us-
ing the original points makes the problem MIN PB-
complete and hard to approximate within a factor of
n1/5−δ. Even for a single path that winds through a
(non simply-connected) region, it is NP-hard to deter-
mine if there exists a polygonal line of the same homo-
topy class that has at most k line segments [7].

In Section 2.1, we describe the shortcut operation
and triangle test suggested by Lars Kulik [10]. In Sec-
tion 2.2 we integrate the shortcut operation with line
simplification and prove that the homotopy class re-
mains unchanged in Section 2.3. Finally, in Section 3
we show how a balanced geodesic triangulation can per-
form each triangle test and valid shortcutting operation
in O(

log2 n
)

time, after O(
n log n

)
preprocessing using

linear space.

2 Definitions and Preliminaries

Although we are primarily concerned with line simplifi-
cation, our solution will handle connected subdivisions
with high degree vertices. Thus, we define the problem
generally, using the terminology of embedded graphs.

Let S be the subdivision of the plane defined by a set
of line segments. Each vertex p is the endpoint of some
lines Lp. The endpoints of Lp other than p itself are
called the neighbors of p and d(p) = |Lp| is called the
degree of p. We say that two points p and q in a can see
each other if the open line segment pq does not intersect
any other line segments of S.

The common case for line simplification is a sequence
of vertices P = {p1, p2, . . . , pk} in which each pair of
adjacent vertices are joined by an edge and all vertices
except the first and last have degree 2. The vertices of
P are called a polygonal line.

2.1 Shortcut Operation and Triangle Test

Our shortcut operation removes a point pi from the sub-
division. Whether pi can be removed depends on its de-
gree d (pi). If d (pi) = 0 then pi is deleted uncondition-
ally. If d (pi) = 1 then it is still deleted unconditionally,
along with its incident line segment. If d (pi) = 2 then
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pi is deleted and a line segment is added from pi−1 to
pi+1, as in Figure 1. If d (pi) > 2, no shortcutting oper-
ation can be performed without first splitting the point
or deleting incident edges, as shown in Figure 2.

pi

pi+1
pi−1

pi+1
pi−1

Figure 1: The triangle test and shortcut operation we
support. In this case, the update would not be allowed
because the triangle is not empty.
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Figure 2: A shortcut operation on a point p is defined
only when d(p) ≤ 2. When d(p) > 2 (e.g., pi is a node
in an ARC/INFO planar map structure), its degree can
be reduced by deleting an incident edge e or splitting
p into two very close points p

′
1 and p

′
2 and combining a

pair of faces about p into a single face.

When d(pi) = 2, the shortcut operation can intro-
duce intersections, as in Figure 1. In order to prevent
such intersections, we shortcut pi only when it passes a
triangle test—i.e. the triangle �pi−1pipi+1 contains no
vertex.

2.2 Line Simplification

The shortcut operation can be incorporated into sev-
eral approaches to line simplification. One approach is
to assign a priority to vertices by looking at nearby an-
gles and vertices, so that updating priorities takes con-
stant time. Example measures of importance are the
angle deviation from 180o, triangle area, edge length,
and Douglas-Peucker recursion depth. A priority queue
is maintained in O(

log n
)

time so that the least impor-
tant vertex is shortcut provided it passes the triangle
test. If the triangle test fails then the vertex is sim-
ply removed from the queue. This operation is iterated
until a target number of vertices remain or a target pri-

ority is reached. By Theorem 2, this process requires
O(

n log2 n
)

time.

2.3 Homotopy

A polygonal line P = {p1, . . . , pk} defines a class of
paths that are deformable to P without intersecting
other vertices or edges L of the planar subdivision
S = R \ L. Specifically, a homotopy of paths in S is a
family of paths Pt : [0, 1] → S such that Pt(0) = p1 and
Pt(1) = pk are fixed, and the map F : [0, 1]× [0, 1] → S
given by F (s, t) = Pt(s) is continuous. The paths P0

and P1 are said to be homotopic. Homotopy defines
an equivalence relation on paths in a topological space.
The equivalence class of a path P under this relation is
called the homotopy class of P .

When we perform line simplification, it is desirable to
choose a representation in the same homotopy class to
preserve the topological relationships with nearby fea-
tures. Choosing a representation from outside the ho-
motopy class can move a house to the wrong side of a
road, or a city to the wet side of a coastline.

Theorem 1 In a planar subdivision with segments L
that do not cross, applying shortcuts will never create a
crossing. Applying shortcuts to the degree 2 vertices of
any polygonal line preserves the homotopy in the space
of R \ L.

Proof. For a degree 2 point pi on the polygonal
line P0 = {p1, . . . , pk}, we first test if the triangle
�pi−1pipi+1 contains any points. If �pi−1pipi+1 con-
tains a point, no shortcut is performed and homo-
topy class is preserved. If �pi−1pipi+1 is empty of
points, we replace edges pi−1p and ppi+1 with a new
edge pi−1pi+1, producing a new polygonal line P1 =
{p1, . . . , pi−1, pi+1, . . . , pk}. The path P0 can be contin-
uously deformed to P1 if �pi−1pipi+1 is empty (of both
points and line segments).

It remains to prove that in a planar subdivision
containing edges pi−1p and ppi+1, if the triangle
�pi−1ppi+1 contains no points, then it contains no (por-
tions of) line segments.

Suppose (for contradiction) that triangle �pi−1ppi+1

contains no points but its interior is intersected by some
line segment l. We know by the triangle test that both
endpoints of l are outside of �pi−1ppi+1. Therefore, l
must intersect two sides of �pi−1ppi+1. By the pigeon
hole principle, one of those sides must be pi−1p or ppi+1,
which is a contradiction, because no segments in the
subdivision intersect. �

3 Shortcut Operations and Trian-
gle Tests in Geodesic Triangulations

A linear-time triangle test is trivial—simply test
whether any vertex of G lies inside the given triangle.
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Figure 3: A geodesic triangle �̃uvw is either (a) a
simple polygon made up of three concave chains and
three polygonal chains emanating from the three ver-
tices where the concave chains are joined, or (b) just a
path with an empty deltoid region and one empty tail.

This can be accelerated in practice by sorting by x co-
ordinate or using buckets to test only those features of
G that overlap the triangle in x and y coordinates. In
this section we describe how a balanced geodesic tri-
angulation of a planar subdivision can be maintained
under shortcut and used to answer triangle tests in
O(

log2 n
)

time per operation.
For an efficient dynamic data structure, no vertex or

edge should participate in too many auxiliary segments
or pointers, or else its removal will cause too much re-
building. We conjecture that this cannot be guaranteed
by a constrained triangulation or a trapezoidation of G.
Instead, we use a geodesic triangulation.

For a simple polygon P , the geodesic path π (p, q) is
the shortest path joining points p and q that does not
go outside of P . For three vertices u, v, and w of P ,
the geodesic triangle �̃uvw is the union of the paths
π (u, v), π (v, w), and π (w, u). See Figure 3.

A geodesic triangulation of a simple polygon P is a de-
composition of P ’s interior into geodesic triangles whose
boundaries may overlap but do not cross. See Figure 4.

Like a triangulation of a convex polygon, a geodesic
triangulation induces a degree-3 dual tree T , where each
node in T corresponds to a geodesic triangle and there
is an edge between the node �̃uvw and the node �̃xyz
if they share two of their vertices (e.g., if x = v and
z = w), as shown in Figure 4. The nodes of T corre-
sponding to the geodesic triangles whose boundaries are
intersected by some ray in P will always form a path in
T . A geodesic triangulation is said to be balanced if the
diameter of T is O(

log |T | ).
Theorem 2 proves that the triangle test and shortcut

operation suggested by Lars Kulik can be performed in
O(

log2 n
)

time using O(
n
)

space. The theorem follows
from the fact that geodesic triangulations support the
following in the same time and space:

Shooting rays Chazelle et al. [2] describe a strat-
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Figure 4: A geodesic triangulation of a polygon and
its dual tree T (dashed arrows). The geodesic triangles
intersected by a ray �r (heavy arrow) form a path in T .

egy for ray-shooting in balanced geodesic
triangulations—first locate the geodesic trian-
gle whose interior contains the starting point for
the query ray �r and iteratively traverse geodesic
triangles along the direction �r until reaching an
edge. This strategy crosses at most O(

log n
)

geodesic triangles. Because the deltoid region of
each triangle is represented by three convex hulls,
the ray-shooting query for any one triangle takes
O(

log n
)

time.
Inserting and deleting edges Geodesic triangu-

lation can be maintained under the operations
of inserting and deleting vertices and edges in
O(

log2 n
)

time per operation. In order to keep
the geodesic triangulation balanced, it is necessary
to perform edge flipping operations. Edge flipping
in the triangulation corresponds to rebalancing
operations in its dual tree T . Goodrich and
Tamassia [6] show how to use red-black tree
balancing on T to maintain balance in the geodesic
triangulation.

Theorem 2 Given a connected subdivision S of the
plane, a balanced geodesic triangulation can dynamically
support the triangle test and shortcut operation for a
point pi in O(

log2 n
)

time using O(
n
)

space.

Proof. Each face of a connected subdivision S is a sim-
ple polygon. Let P be the polygon in which the trian-
gle �pi−1pipi+1 lies. Because S is connected, triangle
�pi−1pipi+1 is empty if and only pi−1 can see pi+1 in
P . Triangle tests can be performed by shooting a ray
from pi−1 to pi+1.

Performing a shortcut operation in a geodesic tri-
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angulation consists of removing the edges pi−1p and
ppi+1 and adding the edge pi−1pi+1. Geodesic trian-
gulations support each of these operations in O(

log2 n
)

time [6]. �

4 Conclusions and Open Problems

We have shown that balanced geodesic triangulations
support the shortcut operation suggested by Lars Ku-
lik and that such an operation can be used to simplify
lines, for example contours in maps. The following open
problems remain:

• Can we get the query and update times down to
O(

log n
)
? Dynamic point location algorithms have

O(
log2 n

)
time complexity, so it would be notable if

this special case of dynamic point location is easier.
• Can the same O(

log2 n
)

time be achieved for
queries and updates using a simpler structure?
Maintaining geodesic triangles requires a primary,
secondary, and tertiary data structure that is un-
likely to be implemented in GIS software. This
question can be answered positively if there is a
simple efficient method for maintaining a mono-
tone decomposition—triangle queries can be im-
plemented using an Overmars/van Leeuwen convex
hull structure [15].

• Goodrich and Tamassia [6] show only how to main-
tain a geodesic triangulation under the assumption
of a connected subdivision. GIS data (and in par-
ticular isolines) are often disconnected—can this
problem be circumvented? If one can maintain a
connected subdivision by adding fake edges while
maintaining a bounded degree on vertices, it may
be possible to generalize many results for connected
subdivisions to any subdivision.

• Which simplification criteria (i.e. importance mea-
sures) work well in practice?
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