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Abstract

A unit disk graph and its proximity graphs are often
used as the underlying topologies of a mobile ad hoc
network. One category of unicast routing algorithms,
position-based routing algorithms, has been developed
and studied extensively in the context of 2-D. This, how-
ever, poses evident questions in terms of the reliability
and efficiency of these algorithms when practically the
mobile host is an object positioned in the real world of
3-D. We propose a heuristic for routing in 3-D based
on the 2-D face routing algorithm. We study experi-
mentally the properties of geometric graphs in 3-D and
the performance of various routing algorithms on these
graphs.

Keywords: three-dimension; geometric spanning sub-
graph; routing algorithm; mobile ad hoc network.

1 Introduction

A wireless mobile ad hoc network (MANET) consists of
mobile hosts that communicate with each other with-
out fixed infrastructure or centralized control. A mo-
bile host usually operates as a router and is able to
communicate with another mobile host if the the dis-
tance between them is within the minimum of their two
direct transmission ranges. As the mobile hosts move
frequently, the underlying topology of the network may
change. Routing efficiently in such network becomes a
challenging task.

Several geometric graphs that represent the underly-
ing topologies [2] of a MANET and many routing algo-
rithms have been proposed and studied in 2-D during
the past few years. Our goal is to extend these geomet-
ric graphs and routing algorithms to 3-D as they can
better represent the real-world scenarios.

Assuming that all mobile hosts have the same maxi-
mum transmission range R, a MANET can be modeled
as a unit disk graph (UDG). Let n be the number of
mobile hosts. The number of edges in the UDG could
be as large as O(n2), i.e., a fully connected topology, if
the maximum distance between any pair of mobile hosts
is less than R.

∗Department of Computer Science, Concordia University, 1455
De Maisonneuve Blvd. West, Montreal, Quebec, Canada, H3G
1M8. [geor kao, fevens, opatrny]@cs.concordia.ca

In the routing algorithms that adopt the flooding
strategy, a mobile host forwards a packet to all its neigh-
bors in the network to discover a path, which potentially
incurs high communication overhead. One method to
reduce such overhead is to allow each mobile host to
communicate only with a selected subset of the neigh-
boring mobile hosts. This approach can be seen as re-
taining geometric spanning subgraphs, such as Gabriel
graph (GG) [5] and relative neighborhood graph (RNG)
[7], of the UDG. Both GG and RNG, extracted from the
UDG, can be computed in a distributed manner.

In this paper, a heuristic for face routing in 3-D is pro-
posed. This projective face routing algorithm, by our
simulation, gives significantly better delivery rate than
the other routing algorithms. The rest of paper is orga-
nized as follows. Section 2 defines geometric graphs in
3-D. In section 3, we review the localized position-based
routing algorithms and describe our proposed heuristic.
We present our experimental results in section 4 and
finally conclude the paper in section 5.

2 Geometric Graphs in 3-D

A MANET is represented by a geometric undirected
graph [1], G = (V, E). Each mobile host with x−, y−
and z−coordinates is a point (x, y, z) in the Euclidean
space. If there is a bidirectional communication link
between any pair of mobile hosts, an edge connects the
pair of points that represent the hosts. We define d(u, v)
as the Euclidean distance between the points u and v,

d(u, v) =
√

(ux − vx)2 + (uy − vy)2 + (uz − vz)2. (1)

We also define S(p, r) as the sphere with center point p
and radius r.

The spanning subgraphs, GG and RNG, extracted
from UDG can be calculated locally by using only the
location information of 1-hop neighbors. If {u,v} is an
edge in UDG, only the 1-hop neighbors of the point u or
v are required to test if the edge {u,v} is to be removed.
As long as UDG is a connected graph, the connectivity
of GG and RNG is also preserved.

Unit Disk Graph (UDG) Assume that the maxi-
mum transmission rage for each mobile host is R.
Any other point that is inside the sphere S(u,R)
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connects to the point u. The set of edges E, repre-
senting the communication links, of the UDG sat-
isfies {{u, v} : u, v ∈ V, d(u, v) ≤ R}.

Gabriel Graph (GG) Let q be the mid-point of an
edge {u, v}. The edge {u, v} exists between the
points u and v if no other point w is present
inside the sphere S(q, d(u,v)

2 ). The set of edges
E of GG satisfies {{u, v} : u, v ∈ V, d(u, v) ≤
minw∈V−{u,v}{

√
d2(u,w) + d2(v, w)}}.

Relative Neighborhood Graph (RNG) An edge
{u, v} exists between the points u and v if
no other point w is present inside the lune
formed by the intersection of the two spheres,
Su(u, d(u, v)) and Sv(v, d(u, v)). The set of edges
E of RNG satisfies {{u, v} : u, v ∈ V, d(u, v) ≤
maxw∈V−{u,v}{d(u,w), d(v, w)}}.

3 Localized Position-Based Routing Algorithms

Localized position-based routing algorithms [6] are dis-
tributed algorithms. Each host makes the routing de-
cision solely based on the location information of itself,
its neighbors, the source and the destination. Let u be
the current node, (v1, ..., vn) be the 1-hop neighboring
nodes of u, s be the source node and t be the destina-
tion node. The hop counts of the path discovered by
the algorithm between the nodes s and t is denoted by
NL(s, t). The hop counts of the shortest path between
the nodes s and t is denoted by ND(s, t). We define the
hop stretch factor as SF (s, t) = NL(s,t)

ND(s,t) . We now spec-
ify four well-known routing algorithms that are used for
a comparison with the routing algorithm proposed in
this paper.

3.1 Compass Routing [9]

The current node u selects its neighboring node that
forms the smallest angle, min{∠v1ut, ..., ∠vnut}, to-
gether with the destination node t.

3.2 Greedy Routing [4]

The current node u selects its neighboring node that is
the closest, min{d(v1, t), ..., d(vn, t)}, to the destination
node t.

3.3 Ellipsoid Routing [11]

The current node u selects its neighboring
node that gives the smallest sum of distances,
min{d(v1, u) + d(v1, t), ..., d(vn, u) + d(vn, t)}, from it-
self to the neighboring node and then to the destination
node t.

3.4 Most Forward Routing [10]

Let (v′1, ..., v
′
n) be the nodes projected on the line ut

respectively. The current node u selects its neigh-
boring node whose projected node is the closest,
min{d(v′1, t), ..., d(v′n, t)}, to the destination node t.
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Figure 1: Various routing algorithms.

3.5 Projective Face Routing

Face routing [3, 8], by using the right-hand rule, guaran-
tees the delivery on a 2-D geometric planar graph. The
line st that connects the source and destination nodes
determines the 2-D faces to be traversed. However, this
line does not determine these faces in a 3-D graph. This
algorithm is thus not directly applicable on a 3-D graph.

We propose a heuristic using the projective approach
to deal with the problem described above. Although
this approach does not guarantee the delivery as a pla-
nar graph cannot be extracted from the projected graph
using only its local information before projection (see
Figure 2), our experiments show that the delivery rate
is significantly better than the other routing algorithms.
By delivery rate, we mean the percentage of successful
deliveries to the destination. The algorithm is as fol-
lows. The points are first projected onto one plane that
contains the line st. The face routing is performed on
this projected graph. If the routing fails, the points are
then projected onto the second plane, that is orthogonal
to the first plane and also contains the line st. The face
routing is again performed.
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Figure 2: Projective face routing algorithm. The neigh-
boring nodes are preserved after projection.
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4 Experimental Results

4.1 Simulation Environment

We conduct experiments under uniform distribution.
There are 75 nodes randomly generated in a cube of
side length 100. The maximum transmission radius of
each host is set to a fixed value. We first calculate all
connected components in the graph so that we can iden-
tify the number of maximal connected subgraphs. We
select the largest connected component (LCC) among
all the connected components to perform the routing
algorithms. The source and destination nodes are then
randomly picked from the LCC. The statistics are ob-
tained from the average of 10,000 runs. The same sim-
ulation setting is conducted for 5 different maximum
transmission radii, which are 15, 20, 25, 30, and 35.

4.2 Observed Results

GG and RNG are the spanning subgraphs computed
from UDG so that they both contain all the nodes of
UDG. Thus, UDG, GG, and RNG also have the same
number of nodes in their LCCs. Figure 3 shows the
average number of nodes in the LCC for different radii.
If the radius is set to 30, the average number of nodes in
the LCC is very close to the total number of nodes, 75,
in the entire graph. Figure 4 shows the average number
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Figure 3: Average number of nodes in the LCC.

of edges in the LCC of each graph for different radii.
As expected, the average number of edges increases as
the radius increases. In Figures 5 and 6, we study the

0

50

100

150

200

250

300

350

15 20 25 30 35
Radius

N
u

m
b

e
r 

o
f 

E
d

g
e

s

UDG GG RNG

Figure 4: Average number of edges in the LCC of dif-
ferent graphs.

distribution of nodes in terms of the node degree. For

the radius of 25, Figure 5 shows the average percentages
of nodes with various degrees of the nodes in the LCC of
each graph (only the nodes in the LCC are considered).
Figure 6 shows the average percentages of nodes with
various degrees of the nodes in the LCC of UDG for
different radii.

R=25

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Degree

P
e

rc
e

n
ta

g
e

 o
f 

N
o

d
e

s

UDG GG RNG

Figure 5: Distribution of nodes with various degrees in
the LCC of different graphs for the radius of 25.
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Figure 6: Distribution of nodes with various degrees in
the LCC of UDG for different radii.

We compare the performance of the routing algo-
rithms for different radii in Figure 7 and Figure 8. Fig-
ure 7 shows the delivery rate, given that the underly-
ing network topology is UDG. For the radius of 25, the
projective face routing algorithm performs significantly
better than the other routing algorithms. Since the pro-
jected graphs on which the projective face routing algo-
rithm performs are not necessarily planar graphs, we use
a threshold value to terminate the routing process if the
number of hops traversed exceeds 150. Interestingly, we
also found that the curve of each routing algorithm for
different radii is U-shaped (a parabola that opens up-
ward). When the radius is small, the number of nodes
in the LCC is small. The delivery rate decreases as the
number of nodes in the LCC becomes larger. When the
radius is 25, the number of nodes in the LCC almost
reaches 80% of that of the entire graph. When we con-
tinue to increase the radius, the number of nodes in the
LCC is nearly the same as the total number of nodes
in the entire graph. However, the number of edges still
increases (the average node degree increases) and this
results in the increase of the delivery rate. Figure 8
shows the hop stretch factor. The hop stretch factor is
close to 1 for the compass, greedy, ellipsoid, and most
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forward routing algorithms even if the radius is set to
different values. Therefore, the routing path traversed
using these four algorithms is almost the same as the
shortest path. In Figure 9 and Figure 10, the radius
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Figure 7: Delivery rate on UDG.
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Figure 8: Hop stretch factor on UDG.

is set to 25. We compare the performance of the five
routing algorithms on the three graphs.

N = 75, R = 25 
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Figure 9: Delivery rate for the radius of 25 on different
graphs.

5 Conclusion

We have studied the UDG and its associated spanning
subgraphs in 3-D and extended the position-based rout-
ing algorithms to adapt to the context of 3-D. Our sim-
ulation showed that the ellipsoid routing algorithm does
not give better delivery rate than the greedy routing al-
gorithm as the number of nodes increases. This conclu-
sion differs from what is claimed in [11]. Our proposed
projective face routing algorithm performs significantly
better in terms of delivery rate than the other routing
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Figure 10: Hop stretch factor for the radius of 25 on
different graphs.

algorithms. However, the projected graphs may have
crossing edges that cannot be eliminated using only the
local information. The delivery is thus not guaranteed.
This open problem remains as future work.
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