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Abstract

We provide an algorithm for unfolding the surface of any
orthogonal polyhedron that falls in a particular shape
class we call Manhattan Towers, to a planar simple or-
thogonal polygon. The algorithm cuts along edges of a
5 × 5 refinement of the vertex grid.

1 Introduction

It is a long standing open problem to decide whether
the surface of every convex polyhedron can be edge un-

folded : cut along edges and unfolded flat to one piece
without overlap [DO05]. It is known that some noncon-
vex polyhedra have no edge unfolding. A simple exam-
ple is a small box sitting on top of a larger box. How-
ever, no example is known of a nonconvex polyhedron
that cannot be unfolded with unrestricted cuts, i.e., cuts
that may pass through the interior of faces.

The difficulty of these questions led to the exploration
of orthogonal polyhedra, those whose faces meet at right
angles. Progress has been made in two directions. First,
by restricting the shapes to subclasses of orthogonal
polyhedra, such as the “orthostacks” and “orthotubes”
studied in [BDD+98]. And second, by generalizing the
cuts beyond edges but with some restrictions. In partic-
ular, a grid-unfolding partitions the surface of the poly-
hedron by coordinate planes through every vertex, and
then restricts cuts to the resulting grid. The box-on-box
example mentioned above can be easily grid-unfolded.
Recent work on grid-unfolding of orthostacks is reported
in [DM04] and [DIL04].

Because on the one hand no example is known of an
orthogonal polyhedron that cannot be grid-unfolded,
and on the other hand no algorithm is known for
grid-unfolding other than very specialized shapes, the
suggestion was made in [DO04] to seek refined grid-

unfoldings, where every face of the vertex grid is further
refined into a regular k × k grid. It is this line we pur-
sue in this paper, on a class of shapes not previously
considered.
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We define “Manhattan Tower (MT) polyhedra” to be
the natural generalization of “Manhattan Skyline poly-
gons.” Although we do not know of an unrefined grid-
unfolding for this class of shapes, we prove (Theorem 2)
that there is a 5×5 grid-unfolding. Our algorithm peels
off a spiral strip that winds first forward and then in-
terleaves backward around vertical slices of the polyhe-
dron, recursing as attached slices are encountered. The
algorithm extends beyond MT shapes, and holds some
promise for wider generalization.

2 Definitions

Let Zk be the plane {z = k}, for k ≥ 0. Define P
to be a Manhattan Tower (MT) if it is an orthogonal
polyhedron such that:

1. P lies in the halfspace z ≥ 0, and its intersection
with Z0 is a simply connected orthogonal polygon;

2. For k < j, P ∩ Zk ⊇ P ∩ Zj : the cross-section at
higher levels is nested in that for lower heights.

A Manhattan Tower P may be viewed as consisting
of nested layers, with each layer the extrusion of an
orthogonal polygon. The base of P is its bottom layer,
which is bounded below by Z0 and above by the xy-
plane passing through the first vertex with z > 0. See
Fig. 1a for an example of a MT.

We use the following notation to describe the six types
of faces, depending on the direction in which the out-
ward normal points: front: −y; back: +y; left: −x;
right: +x; bottom: −z; top: +z.

An x-edge is an edge that is parallel to the x-axis; y-
edges and z-edges are defined similarly. Clockwise (cw)
and counterclockwise (ccw) directions are defined with
respect to the viewpoint from y = −∞.

3 Base Partitioning

We start with the partition π of the base layer induced
by the xz-planes passing through every vertex of P .
Such a partition consists of rectangular boxes only. See
Fig. 1b. The dual graph of π has a node for each box
and an edge between each pair of nodes corresponding
to adjacent boxes. Since the base is simply connected,
the dual graph of π is a tree T (Fig. 1c), which we refer
to as the recursion tree. The root of T is a node corre-
sponding to a box (the root box ) whose front face has a
minimum y-coordinate (breaking ties arbitrarily).
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Figure 1: (a) Manhattan Tower P (b) Partition π of the
base of P (c) Recursion tree T .

It turns out that nearly all issues are present in un-
folding single-layer MTs, which we describe in Section 4.
The algorithm is then extended to handle towers in Sec-
tion 5.

4 Single-Layer MTs

We describe the unfolding algorithm recursively, start-
ing with the base case in which the partition π consists
of a single rectangular box.

4.1 Single Box Unfolding

Let r be a rectangular box and let A, B, C, D, E and
F be the top, right, bottom, left, back and front faces
of r, respectively. Let s and t be two points on the
same x-edge or opposite x-edges of the front face of r.
The unfolding of r starts at s and ends at t. Here we
discuss the case where both s and t lie on the top edge
of the front face; the other cases are similar and will be
illustrated in subsequent sections.

The main unfolding idea is to cut the box into a
staircase-like strip that starts at s, spirals cw around
side faces A, B, C and D, crosses the back face E and
then spirals ccw around back to t. This idea is illus-
trated in Fig. 2. The resulting strip ξ can be unfolded
flat and laid out horizontally in a plane. The front face
F and back face E can be flipped up and attached ver-
tically to this strip without overlap, as in Fig. 2c.

4.2 Recursion Structure

In general, a box r has children (adjacent boxes) at-
tached along its front and/or back face. Call the chil-
dren attached on the front the front children and the
children attached on the back the back children. In un-
folding r, we unwind the “side faces” (top, bottom, left,
and right faces) into a staircase-like strip just as de-
scribed for the single box. But when the strip runs
alongside the front or back face of r and encounters an
adjacent child, the unfolding of r is temporarily sus-
pended, the child is recursively unfolded, then the un-
folding of r resumes where it left off.
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Figure 2: Single box unfolding. (a) Front view of box
r and mirror view of left (D), bottom (C) and back
(E) faces, marked with unfolding cuts (b) Faces of r

flattened out (front face not shown) (c) Spiral unfolding
of r; labels identify faces containing the unfolded pieces.

At any time in the recursive algorithm there is a for-

ward direction, corresponding to the initial spiraling
from front to back (the lighter strip in Fig. 2), and an
opposing backward direction corresponding to the sub-
sequent reverse spiraling from back to front (the darker
strip in Fig. 2). When the recursion processes a front
child, the sense of forward/backward is reversed: we
view the coordinate system rotated so that the +y axis
is aligned with the spiral’s forward direction, with all
terms tied to the axes altering appropriately. In partic-
ular, this means that the start and end unfolding points
s′, t′ of a front child r′ lie on the front face of r′, as
defined in the rotated system.

4.3 Suturing Techniques

We employ two methods to “suture” the unfolding of a
child to its parent’s unfolding. The first method, same-

direction suture, is used to suture all front children to
their parent. If there are no back children, then the back
face of the parent is used to reverse the direction of the
spiral to complete the parent’s unfolding, as described
in Section 4.1 for the single box. However, if the parent
has one or more back children, these children cover parts
or perhaps the entire back face of the parent, and thus
a back face strip (such as K0 in Fig. 2) may not be
available for the reversal. So instead we use a second
suturing method, reverse-direction suture, for one of the
back children. This suture uses the child’s unfolding to
reverse the direction of the parent’s spiral, and does
not require a back-face strip. We choose exactly one

back child for reverse-direction suturing. Although any
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such child would serve, for definiteness we select the
rightmost child. Our suturing rules are as follows:

1. For every front child, use same-direction suturing.

2. For the rightmost back child, use reverse-direction
suturing.

3. For remaining back children, use same-direction su-
turing.

Same-direction suture. We first note that a front child
r′ never entirely covers the front face of its parent box
r. The same-direction suture may only be applied in
such a situation of non-complete coverage of the shared
face, for it uses an ε-strip of that face.
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Figure 3: Same-direction suture. (a) Front view of faces
root box r and front child r′, with mirror bottom and
right views. (b) Recursive unfolding.

This suture begins at the point where the parent’s spi-
ral meets an adjacent child as it runs alongside its front
or back face, as illustrated in Fig. 3 for parent r and
front child r′. It begins by cutting an ε-thick strip off
the vertical (front or back) face of the parent alongside
the child (strip K1 in Fig. 3), then it takes an ε-thick
bite off the opposite (top or bottom) face of the parent
(strip K2 in Fig. 3). This marks the point s′ where the
spiral unfolding of the child starts. The child’s spiral un-
folding ends at point t′ vertically opposite to s′. When
the child’s unfolding is complete, the spiral unfolding of
the parent resumes at t′. As the name suggests, this su-
turing technique preserves the unwinding direction (cw
or ccw) of the parent’s spiral.

Reverse-direction suture. This suture begins after the
parent’s spiral completes its first cycle around the side
faces, as illustrated in Fig. 4 for parent r and back child

r′. After a forward move in the +y-direction, the spiral
starts a second cycle around the side faces, stops when
it reaches the rightmost back child, then continues with
an ε-thick strip S in the +y-direction. Let s′ be the
left corner of S on the boundary between r and r′. The
unfolding of r′ begins at point s′ and ends at point t′

slightly to the left of s′. When the child’s unfolding is
complete, the unfolding of the parent resumes at t′, with
the spiral unwinding in reverse direction.

Fig. 5 shows the two sutures used together to unfold
a five box H-shaped base.
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Figure 4: Reverse-direction suture. (a) Front view of
faces root box r and back child r′, with mirror bottom,
left and back views. (b) Recursive unfolding.

4.4 Attaching Front and Back Faces

The spiral strip ξ unfolds all top, bottom, right, and left
faces of the base. It also unfolds the ε-thick strips of
front and back faces used by the same-direction sutures
(K1 in Fig. 3) and the ε-thick strips of back faces used
to reverse the spiral direction in the base cases (K0 in
Fig. 2). The staircase structure of ξ guarantees that no
overlap occurs. The following lemma (whose proof is
omitted in this abstract) is key to proving nonoverlap
of the entire unfolding:

Lemma 1 For any box b, exposed front and back pieces

of b that are not part of ξ can be attached orthogonal to

ξ without overlap.

5 Multiple-Layer MTs

Few changes are necessary to make the single-layer
unfolding algorithm handle multiple-layer Manhattan
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Figure 5: Unfolding Single-Layer MTs.

Towers. When there are multiple-layers, the basic unit
to unfold is a vertical stack Sr consisting of a box r in
the base layer partition π and all the towers that rest
on top of r. The unfolding of Sr is similar to that of r

but with the spiral cycling up and down over the towers;
compare Figs. 2a and 6. The structure of the recursive
calls is identical to the single-layer case. What differs is
that transitions from one stack to another may move up
or down between towers; compare Figs. 5 and 7. These
differences lengthen ξ horizontally and vertically.
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Figure 6: Unfolding a vertical stack.

It may also happen that ξ does not include every left
or right face strip (such as K3 in Fig. 7), but such strips
can be easily attached to ξ without overlap.

6 Conclusions

Although we have used ε-strips throughout, it should be
evident that there is no need for arbitrarily thin strips:
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Figure 7: Unfolding Multiple-Layer MTs.

Theorem 2 Every Manhattan Tower polyhedron can

be edge-unfolded with a 5 × 5 refinement of each face

of the vertex grid.

The algorithm can be easily implemented to run in
O(n2) time.

We know our algorithm as described works unaltered
on objects beyond the class of Manhattan Towers, and
we are currently extending the algorithm to handle a
wider range of orthogonal polyhedra.
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