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Abstract

Given a terrain T and an antenna A located on it, we
would like to approximate the radio map of A over T ,
namely, to associate the signal strength of each point
p ∈ T as received from A. Several facility location
algorithms, which involve locating large scale wireless
networks (WiMAX), use approximated radio maps al-
gorithms. In fact, computing radio maps is often the
runtime bottle-neck of such facility location algorithms.
This article suggests a new radar-like algorithm (RLA)
for approximating radio maps. We also report on ex-
periments performed to compare between the suggested
new algorithm, and other well-known methods. The
main conclusion is that the new algorithm (RLA) is sig-
nificantly better than the others, i.e. its running time is
3-5 times faster for the same approximation accuracy.

1 Introduction

The rapid development in wireless communication tech-
nology has dramatically reduced costs and increased
the number of users. This development has increased
the demand for wireless communication while support-
ing better throughput and quality of service. To with-
stand the increasing demand, more antennas should be
installed on urban and rural regions. However, the cost
of installing antennas accounts for a significant fraction
of the wireless communication hardware system. For
that reason, communication companies are interested
in installing a minimal number of antennas that provide
the required throughput and quality of service. Solving
such optimization problems, requires efficient methods
to approximate radio maps. In addition, recently new
wireless broadband technologies (namely WiMAX or
802.16) can support 50-kilometer connections and more.
Meaning, single antenna can cover large area of sparse
population. Hence accurate radio maps approximations
are required for optimizing such antenna location.

The problem of approximating radio map of an an-
tenna over a terrain was studied extensively [4, 9]. This
problem is a generalization of the well known problem
of computing the visible regions from a point p over a
terrain [1, 6]. A point p is either visible or not from a
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viewpoint, while the signal strength at a point p (sent
from an antenna A) is a real value that is base on the
visibility, distance, and terrain between p and A. Com-
puting radio maps is often the runtime bottle-neck of
wireless facility location algorithms as a result of its
high computational complexity. For that reason, it is
desirable to develop fast approximation algorithms.

In this paper we present a new approach to approx-
imate radio maps which is based on a radar-like radial
sweep-line algorithm centered at the antenna position.
Our experimental results show that the new radar-like
approach is significantly faster than existing methods.

In the rest of this paper, we first overview the basis of
RF (diffraction) models for predicting a signal strength
at a point followed by several sampling algorithms for
predicting the signal strength at every point in a region
i.e. approximating radio map. Then we present the
pipeline algorithm to compute a set of samples along
a ray followed by the new RLA for approximating the
radio map. Next we present a large-scale experiment
comparing the new radar-like method with previous ra-
dio map approximations. Finally we draw some conclu-
sions and directions for future work.

2 Background and Related works

In this section, we briefly overview RF (diffraction)
models and the framework for predicting the signal
strength for every point in a region.

2.1 Computing the signal strength at a point

Radio map approximation algorithms are based on mod-
els that predict the signal strength at a query point on
a terrain, i.e. given a terrain T , an antenna position A
and a receiver at R (on T ), predict the signal strength
coming from A at R. RF propagation models1 for large
scale rural areas usually use the following frame work
to predict the signal strength at R: (i) Compute the
cross-section between A and R by projecting the terrain
points between A and R on a 2D plane where X-value is
the distance from A and Y-value is the height. (ii) Sim-
plify the cross-section to a small (usually constant) set
of points. This set often includes the dominant points
of the cross-section convex hull. (iii) Use the simplified
cross-section to approximate the signal strength at R.

1This paper only addresses RF models based on cross-section
for large scale rural regions and not urban RF models.
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In this paper we assume the use of Single knife edge
(Bullington), Multiple knife edge (Epstein and Peter-
son, Deygout) propagation models. For detailed de-
scription and formulation of these models we refer the
interested readers to [4].

2.2 Computing a radio map using samples

Several approaches have used various sampling tech-
niques to approximate radio map over the surface of
a given terrain. These samples, which we denote as
the sample set (SP ), is selected randomly, grid-based
points, or the points survive a terrain simplification al-
gorithm [2, 7] (these points, usually fairly represent the
original terrain). Acceptable sample sets SP usually
consists of dominant points (points remain after simpli-
fication) as well as some additional grid points to ensure
flat regions are not under sampled. This is done because
the wave propagation is not linear and its behavior may
be difficult to predict.

Upon the selection of the sample set the sampling
based approaches compute the signal strength using RF
propagation model (see [4]) at each sample point and
the signal strength at any other point (on the terrain
surface) is computed by extrapolating adjacent samples.
A common method to approximate the signal strength
over a region (represented by SP ) is to triangulate the
points in SP using their XY -coordinates. Given a query
point q, find the triangle t on which q resides. The
signal strength of q is given by the intersection value (Z
– signal) of q and the 3D plane represented by t.

3 Our Approach

Motivated by radar-like visibility algorithms [1], we have
developed a novel approach to approximate radio maps
over a terrain. Our approach simulates a radar scanning
scheme using an efficient pipeline technique to compute
sample-points and signal strength along a radar ray that
represents a cross-section of the terrain. We will first
overview our efficient pipeline technique.

3.1 Pipeline signal computation

Computing the cross-section between the receiver and
the transmitter and its convex hull is an essential stage
of typical RF model prediction algorithms. The time
complexity of these operations is not small. Further-
more, these operations are performed many times over
the execution of the approximation algorithm. For that
reason, these operations determine the complexity of
any RF model implementation. Therefore, reducing
the complexity of these two operations could directly
accelerate computing the signal strength over the given
terrain. This discussion has motivated the development
of the pipeline technique.

The main idea is based on computing several sample
points along a single cross-section. For a given trans-
mitter A and receiver B, instead of just computing the
signal strength at B (coming from A), with just a mi-
nor overhead, the signal strength at other points along
the cross-section AB could be computed. Our pipeline
method is based on efficient 2D-terrain simplification
heuristics that we will described next.

Several approaches to measure the distance between
two x-monotone polygonal chains S1 = [u1, . . . , un] and
S2 = [v1, . . . , vm] have been developed. We have chosen
to use the following distance metrics:

• Maximal Vertical Distance = max(d1, d2)
where d1=max({dist(ui, S2) : i ∈ {1, . . . , n}} and
d2=max({dist(vi, S1) : i ∈ {1, . . . ,m}}

• Average Distance = 1
|S| ·(A(S1∪S2)−A(S1∩S2))

where A(S1∪S2) is the area below one of the chains,
A(S1 ∩ S2) is the area below both the chains, and
|S| is the average length of the chains.

• Root Mean Square resembles average distance,
with more sensitivity to large vertical distances [3].

Several versions of finding the smallest ε − bound ap-
proximation of a 2D-terrain were proved to be NP-hard
[5], other versions of this problem have polynomial op-
timal algorithms [5] but their runtime is impractical for
actual applications. Therefore, many heuristics were
suggested, which may not be optimal. However, these
heuristics are often very efficient and provide acceptable
approximations.

We have adopted a sample-budget based simplifica-
tion algorithm to select sample points from a give cross-
section. One part of the sample points is selected uni-
formly over the entire cross-section and the rest of the
sample points are selected using the following subdivi-
sion algorithm. The subdivision algorithm starts with
the two extreme points of the cross-section and adds
sample points in an iterative manner. At each itera-
tion it adds the point which has the maximal vertical
distance from the currently selected sample. The al-
gorithm stops when it reaches the predefined budget.
Note that the simplified chain contains the convex-hull
of the original chain.

All error metrics mentioned earlier, could be used to
define the error distance between a cross-section and
its simplification. however, it seems that the signal
strength is highly correlated with the visibility (or an-
gle of blocking), and trying to minimize the maximal
vertical error leads to the best signal strength approxi-
mation.

3.2 The Radar-Like Algorithm

In this section we present the radar-like generic algo-
rithm and a measure of resemblance required to trans-
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form the generic algorithm into a RLA.
Let signal-section(T, p, θ) be the signal strength over

some sampling set of points along the ray emanating
from p and forming an angle θ with the positive x-
axis. Namely, signal-section(T, p, θ) computes a sim-
plified signal-section , represented by the projections of
the signal portions of a sampling set SP over a cross-
section of T in the direction specified by this ray.

The generic algorithm first sweeps the terrain T clock-
wise with a fix rotation angle δθ. For each rotation an-
gle (θ) it computes and stores the signal-section(T, p, θ).
Then, it iteratively finds the two most distant consecu-
tive signal-sections and refine them using an intermedi-
ate signal-section. The pseudo-code of the generic algo-
rithm is presented in the frame below.

Given a triangulation T representing a terrain
and an antenna location p (on or above T ):

θ ← 0
δθ ← some constant small angle
S1 ← signal-section(T, p, θ)
PQ← new priority queue
while (θ < 360)

S2 ← signal-section(T, p, θ + δθ)
Pz ← pizza-slice(S1, S2)
add Pz to PQ
S1 ← S2

θ ← θ + δθ

i← 0
while (i ≤ BUDGET )

Pz ← the most distant pizza-slice in PQ
compute a middle-angle signal-section (cutting Pz)
divide Pz into two pizza-slices: Pz1, Pz2

remove Pz and add Pz1 and Pz2 from/to PQ
i = i + 1

In the algorithm above pizza slice refers to two con-
secutive signal-sections (see Figure 1), the distance asso-
ciated with a pizza slice is the distance between the two
signal-sections composing it. The distance between the
two consecutive signal-sections S1 and S2 is computed
by one of the distance metrics suggested in section 3.1.
This distance value is then multiplied by δ, the angle
difference between S1 and S2. The role of δ here is to
correlate between the area and the distance of a pizza-
slice.

We define Fixed radar as an RLA of zero budget,
Adaptive radar as an RLA of a significant size bud-
get, and Advanced radar as a fine tuned RLA. Fine-
tuned RLA means that the BUDGET , δθ, and para-
meter which influence the signal-section are adjusted to
generate better approximation.

4 Experimental Results

We have implemented our algorithm using Java over
Windows XP. Then, have performed several tests on
various datasets using our unoptimized implementation

Figure 1: Two consecutive cross-sections (Pizza-slice),
are simplified using the max-vertical metric, that re-
duces the number of vertices in the 2D-terrain from ap-
proximated 300 vertices to 20.

Figure 2: Radio-maps as computed by the various meth-
ods: 5000 samples each (high to low): grid, terrain sim-
plification, fixed radar and sensitive radar. The cor-
responding extrapolation is given to the right of each
sample-set. The antenna is in the center and the bright-
ness represents the strength of the signal. Observe that
sensitive radar (lowest) has the best edge detection.

and have received encouraging results. In addition, we
have tested the performance and results of our imple-
mentation against different radio map approximation
algorithms. We have compared basic sampling algo-
rithms that include grid, random, and simplification
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based sampling with the three version of the radar-
like algorithms– fixed, sensitive, and advanced. All RF
propagation models were tested and calibrated accord-
ing to Hexagon NIR application [8].

The error of the radio map RM(T,A) is approxi-
mated using a random sample set S that satisfies :
RM(T,A, S) = 1

|S| ·
∑

si∈S |sig(T,A, si)−RM(T,A, si)|
where sig(T,A, s) is the exact signal at s, and
RM(T,A, s) is the approximated signal at s (using the
radio map RM(T,A)) and 1000 ≤ |S| ≤ 5000.

4.1 Experiment details

The experiment consisted of 17 different high resolu-
tion elevation maps representing various terrain types
(i.e. flat, hills, mountains, lakes, dunes etc’). Each map
represents rectangular area of 100 × 100 km2, and in-
cludes 106 vertices. For each terrain 50 random antenna
locations were chosen. For each viewpoint p, the six ap-
proximation algorithms were applied 15 times using a
combination of the heights 10, 20, and 50 meters above
the surface of T and radius of 5, 10, 15, 20, and 30 km.
For each approximated radio map the associated error
was computed according to the above-mentioned error
measures. In addition, we have performed the tests for
various sample sizes: 1000, 2500, 5000, 10000, 20000.
These experiments were conducted using a PC machine
with AMD Sempron 1.6GHz CPU and 512MB memory
running Windows XP.

4.2 Results summary

Part of our experimental results are reported in this
section. Table 1 shows the average runtime, in millisec-
onds, for each of the six methods as a function of the
sampling size (ps). Table 2 presents the average error
ratio for a given sample size (normalized to the Random
method results).

Ave Time ps=1000 ps=2500 ps=5000 ps=10000 ps=20000

Random 58.1 144.5 287.3 569.8 1127.4
Grid 56.4 137.1 275.9 547.7 1087.3
TS 58.2 144.0 287.8 570.2 1130.5
F-Radar 19.2 46.6 87.1 184.8 392.1
S-Radar 20.6 47.1 89.8 191.2 406.6
A-Radar 20.8 47.3 90.2 191.9 408.2

Table 1: Average runtime (milliseconds) for construct-
ing a radio map of radius 10 km.

5 Conclusions and future work

We have presented a new approach to approximate ra-
dio maps that is based on a new RLA. In addition, we
have shown that our new approach provides better re-
sults, in terms of accuracy and efficiency, than the basic
sampling methods (grid, random, and terrain simplifica-
tion). For any sample size and range, computing radio

Ave Error ps=1000 ps=2500 ps=5000 ps=10000 ps=20000

Random 1.00 1.00 1.00 1.00 1.00
Grid 0.98 0.97 0.96 0.96 0.97
TS 0.92 0.91 0.9 0.89 0.9
F-Radar 1.01 1.00 1.01 1.02 1.01
S-Radar 0.95 0.93 0.91 0.91 0.93
A-Radar 0.91 0.89 0.88 0.88 0.90

Table 2: Average error size (normalized to the random
method) of each radio map method (of radius 10 km).

maps using our RLA is 3 to 5 times faster than other
methods, and yet radio maps computed by RLA were
(on average) more accurate.

Further research may include additional heuristics
and fine-tuning of the ones suggested here. In partic-
ular the RLA property of having radial order over the
pizza-slices can be used to compute an alternative ex-
trapolation method (avoid computing a triangulation).
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