
Feasibility of the Exact Geometric Computation Paradigm for

Largest Empty Anchored Cylinder Computation in the Plane

Stefan Schirra∗

Abstract

In the largest empty anchored cylinder problem one
is looking for a ray anchored at the origin that max-
imizes the minimum (weighted) distance to a given set
of points. For a set of n points in the plane, Follert et
al. presented an optimal O(n log n) algorithm. We ana-
lyze the algebraic degree of the computations involved in
their algorithm and show that it is much smaller than it
looks at first sight. Indeed, a deliberate implementation
of the optimal algorithm surprisingly avoids irrational
number computations at all. Thus efficient exact geo-
metric computation becomes feasible for this problem.

1 Introduction

The goal in exact geometric computation [12] is to let
the implementation make correct decisions in order to
have the same control flow as in its theoretical coun-
terpart published in a research paper. The exact ge-
ometric computation approach is appealing because it
avoids redesigning an algorithm such that it takes nu-
merical imprecision into account. Furthermore it allows
for transferring the correctness proof to the actual code.

Exact geometric computation has been successfully
applied to many geometric problems, in particular in
the software libraries cgal [4] and leda [9]. Thanks to
floating-point filters and related techniques exact geo-
metric computation has been proven to be practical and
efficient for many problems in linear geometry where all
numerical computations involve rational arithmetic only
(see [6, 11, 13] for surveys on such techniques). Exact
geometric computation is viable even if irrational al-
gebraic numbers come into play. For example, using
constructive separation bounds [2, 10] degeneracies can
still be correctly detected [1, 8]. However, the algebraic
degree of the numbers involved in a geometric compu-
tation has a strong impact on the efficiency of exact
geometric computation, because the separation bounds
for an arithmetic expression are exponential in the al-
gebraic degree of the expression [2, 10].

In Section 3 we analyze the algebraic degree of largest
empty anchored cylinder computation in the plane. In

∗Department of Simulation and Graphics, Faculty of Com-

puter Science, Otto von Guericke University Magdeburg, Ger-

many. stschirr at isg.cs.uni-magdeburg.de

this problem, we are given a set S of n (weighted) points
and we are looking for a ray anchored at the origin such
that the minimum (weighted) distance to the points is
as large as possible, cf. Fig. 1. Follert et al. [5] show
that without loss of generality we may assume that all
points have unit weights. They present an algorithm
that solves the problem in optimal O(n log n) time. Us-
ing the results from Section 3 we show in Section 4 that
their algorithm can be implemented carefully such that
irrational arithmetic does not arise. In view of the de-
scription of the optimal algorithm in [5] this is aston-
ishing.

Figure 1: An optimal ray for a set of points with unit
weights and circles centered at the points with radius
equal to the minimum distance to the ray.

2 The algorithm

Follert et al. [5] separately solve the largest empty
anchored cylinder problem for rays emanating to the
right and rays emanating to the left and reduce both
subproblems to lower envelope computation. In the
sequel we consider the subproblem for rays emanat-
ing to the right. Let dist(,) denote Euclidean dis-
tance and let o denote the origin. Furthermore, let
δmin = min{dist(o, p) : p ∈ S}. Follert et al. repre-
sent a ray by the angle ϕ ∈ [−π

2
, π

2
] between the ray

and the positive x-axis. In order to stay within the al-
gebraic computation tree model they identify a ray with

1

angle ϕ with sinϕ ∈ [−1, 1]. For ̺ ∈ [−1, 1] let r(̺) be
the corresponding ray.

In [5], for each p ∈ S the function lp : [−1, 1] → R

with ̺ 7→ lp(̺) = min(dist(p, r(̺)), δmin) is defined and
their lower envelope LS is considered. Follert et al. show
that an optimal ray corresponds to a highest point on
LS . Furthermore, they show that the lower envelope
forms a Davenport-Schinzel sequence of order two and
hence has size O(n). Follert et al. use a divide-and-
conquer approach as described in [7] to compute the
lower envelope in O(n log n) time.

We slightly modify their approach as follows. For
p ∈ S let Dp ⊂ [−1, 1] be the set of values ̺ where
r(̺) is tangent to the circle with center p and radius
dist(p, r(̺)). For p ∈ S and ̺ ∈ [−1, 1] we define

l̂p(̺) = dist(p, r(̺)) if ̺ ∈ Dp and l̂p(̺) = ∞ otherwise.
Furthermore we define lδmin

with lδmin
(̺) = δmin for all

̺ ∈ [−1, 1]. Instead of the lower envelope LS of the
functions in F(S) = {lp : p ∈ S} we consider the lower

envelope L̂S of the functions in F̂(S) = {l̂p : p ∈ S}.
We have

Lemma 1 LS is the lower envelope of F̂(S) ∪ {lδmin
}.

As a direct consequence of Lemma 1 we get

Lemma 2 Let (̺0, δ0) be a highest point on L̂S. Then

either (̺0, δ0) or (̺0, δmin) is a highest point on LS.

Thus a highest point on L̂S corresponds to an optimal
ray. Since each pair of functions from F̂(S) intersects at
most twice, L̂S has size O(n), too, and can be computed
by a divide-and-conquer approach in O(n log n) time as
well.

3 The algebraic degree

Follert et al. [5] neither give explicit formulas for the
functions in F(S) nor explicit formulas for their inter-
section points. Instead of that they give explicit for-
mulas for the endpoints of the subintervals Jp(δ) of
[−1, 1] corresponding to rays having distance at most
δ to p = (px, py) ∈ S for δ ∈ [0, δmin]. They show that
Jp(δ) is

py

√

p2
x + p2

y − δ2 − pxδ

p2
x + p2

y

,
py

√

p2
x + p2

y − δ2 + pxδ

p2
x + p2

y

if δ ≤ px, that Jp(δ) is

py

√

p2
x + p2

y − δ2 − pxδ

p2
x + p2

y

, 1

if 0 ≤ px ≤ δ and py ≥ 0, and that Jp(δ) is

−1,
py

√

p2
x + p2

y − δ2 + pxδ

p2
x + p2

y

Figure 2: Bitangent rays.

if 0 ≤ px ≤ δ and py ≤ 0. Similar formulas involving
square-root operations are given for the case px ≤ 0.
These formulas from [5] suggest that the intersection
points of two functions in F(S) have irrational, alge-
braic coordinates in general. However, it is much better
than it looks. The rays corresponding to the intersec-
tion points of two functions in F̂(S) are rational! A

ray corresponding to an intersection between l̂p and l̂q
is tangent to circles with the same radius centered at p

and q, cf. Fig. 2. We call such a ray a bitangent ray.
In the system of polynomial equations below, the un-
knowns X , Y , and ∆ represent x- and y- coordinate of
the tangency point at the circle centered at p and the
squared radius of the circle, respectively. The tangency
point at the circle centered at q is (λX, λY), where λ is
another unknown.

X2 − 2 Xpx + p2
x + Y 2 − 2 Y py + p2

y = ∆
λ2X2 − 2 λXqx + q2

x + λ2Y 2 − 2 λY qy + q2
y = ∆

X2 − Xpx + Y 2 − Y py = 0
λX2 − Xqx + λY 2 − Y qy = 0

The first and the second equation reflect the fact that
the tangency points lie on circles with squared radius ∆
and centers p and q respectively. The last two equations
reflect the fact that the lines through the circle centers
and the tangency points must be orthogonal to the ray.
Note that a solution (X0, Y0, λ0, ∆0) of this polynomial
system corresponds to a bitangent ray only if λ0 ≥ 0.
With an appropriate term order, a Gröbner basis com-
putation (cf. [3]) for this system yields a univariate poly-
nomial of degree 2 whose roots are the solutions for X :

(p4
x +2 p2

xp2
y +2 q2

yp
2
x−2 p2

xq2
x−8 qypxpyqx +p4

y +2 q2
yq

2
x +

q4
y + q4

x −2 p2
yq

2
y +2 p2

yq
2
x)X2 +(−2 p5

x−4 p3
xp2

y −2 q2
yp3

x +
4 p3

xq2
x−2 pxp4

y−2 pxq4
x+2 pxp2

yq2
y−2 pxq2

yq2
x+2 qyqxp3

y−
2 q3

yqxpy − 2 q3
xpyqy + 10 pyqxqyp2

x)X + p2
yq

2
xq2

y − p4
yq2

x +
2 q3

xpyqypx + p6
x − 2 pyqxqyp3

x + p2
xp4

y + p2
xq4

x − p2
xp2

yq
2
y −

2 p2
xp2

yq
2
x + 2 p4

xp2
y − 2 p4

xq2
x

2

The roots of this quadratic polynomial are rational!

X1,2 =
(px ± qx)(p2

y ± pyqy + p2
x ± pxqx)

(px ± qx)2 + (py ± qy)2

Thus the x-coordinate of a tangency point with the cir-
cle with center p is rational. Because of symmetry, the
y-coordinate is rational as well:

Y1,2 =
(py ± qy)(p2

y ± pyqy + p2
x ± pxqx)

(px ± qx)2 + (py ± qy)2

Since the coordinates of the tangency points for p are
rational, the squared radii, which are squared distances
between tangency point and center p, are rational, too.
Because of symmetry again, the same holds with respect
to q. The bitangent rays have rational direction vectors
(X1, Y1) and (X2, Y2), respectively. We have

Lemma 3 The coordinates of the tangency points of

bitangent rays are rational.

That means all bitangent rays have a rational direc-
tion vector. Canceling common factors of Xi and Yi we
simply get rational direction vectors (px ± qx, py ± qy).
Alternatively, we get these rational direction vectors by
looking at the distance

ζp(m) =
|py − pxm|√

1 + m2
,

of p to the non-vertical line Y = mX through o with
slope m. An intersection of l̂p and l̂q corresponding to
a non-vertical bitangent ray corresponds to an inter-
section of ζp(m) and ζq(m). Observe that both ζp(m)
and ζq(m) have factor (

√
1 + m2)−1 in common. Thus,

in order to compute the slopes at the intersections, it
suffices to compute the slopes at the intersections of
the remaining piecewise linear factors |py − pxm| and
|qy − qxm|.

Instead of representing a bitangent ray by ̺ ∈ [−1, 1]
as suggested in [5] we represent it by a rational direction
vector. In the next section, we show that based on the
rationality of direction vectors the lower envelope and
highest point computation for L̂S can be implemented
solely using rational arithmetic.

4 The implementation

By Lemma 2 we can find an optimal ray by comput-
ing the lower envelope L̂S and a highest point on it.
We represent a lower envelope by a sequence of points
〈p1, . . . , pm〉 with pi ∈ S ∪ {o}, where o represents a
section where the lower envelope is ∞ and p ∈ S rep-
resents a section contained in Dp, where l̂p is on the
lower envelope. Each change of representing points ei-
ther corresponds to a bitangent ray or an endpoint of

some Dp. The lower envelope is computed using divide-
and-conquer. The essential task is to merge two lower
envelopes LS1

= 〈u1, . . . , um〉 and LS2
= 〈v1, . . . , vk〉

into LS1∪S2
= 〈w1, . . .〉. This is done by simultaneously

sweeping along the three lower envelopes, similar to the
merge step of merge sort.

We start with a few observations. First observe that
a ray corresponding to an endpoint of Dp has rational
direction orthogonal to the vector p − o. Next observe
that an intersection between l̂p and l̂q is transversal un-
less p, q and o are collinear. If they are collinear the
function of the point further away from o is never below
the function of the point closer to o. Therefore, the for-
mer function does not contribute to the lower envelope
and the corresponding point can be ignored. So we may
assume that all intersections between two functions in
F̂(S) are transversal. Furthermore observe that from
the relative positions of a bitangent ray r and its defin-
ing points p and q and dist(p, o) and dist(q, o), we can
deduce which of the points p and q comes closer to r,
if r is rotated counterclockwise. If the points are on
different sides of the line supporting r, the point on the
left comes closer; if both points are on the left, the point
with larger distance to o becomes the one closer to r,
and if both are on the right, the point closer to o comes
closer to r by counterclockwise rotation. Since we know
a rational point on the bitangent ray, sideness can be
determined by an orientation test involving points with
rational coordinates only. We can make use of this ob-
servation in opposite ways: (1) to elect the bitangent
ray if we know which of its defining points comes closer
by counterclockwise rotation, and (2) to detect which
point comes closer, if we know the bitangent ray. Fi-
nally remember, that the squared distance between a
bitangent ray and its defining points is rational. Thus
we can compare squared (minimum) distances to bitan-
gent rays using rational arithmetic.

Assume we are going to merge 〈u1, . . . , um〉 and
〈v1, . . . , vk〉. Initially we have to find the first point
w1 representing the new lower envelope 〈w1, w2, . . .〉. If
u1 = v1 = o we have w1 = o. If exactly one of the points
p1 and u1 is o, w1 is the point different from o. If both
are different from o, we have to compare their distance
to the ray pointing along the negative y-axis. In this
case both u1 and v1 have non-positive y-coordinate and
the distance to the ray is just the absolute value of their
x-coordinate. So rational arithmetic suffices to compute
the initial point w1.

Next assume that we are currently sweeping a part
labeled ui on the first lower envelope and a part labeled
vj on the second lower envelope. We must identify the
next event of the sweep. This event will correspond to
the change from ui to ui+1 on the first envelope or to the
change from vj to vj+1 on the second envelope or to an

intersection between l̂ui
and l̂vj

. The rays corresponding

3

to these events are bitangent rays or correspond to an
endpoint of some Dp. We must detect the ray reached
first by further counterclockwise rotation. The rays are
anchored at o and rightward. For each of the three can-
didate rays, we know a rational direction vector. Thus
we can compare slopes solely with rational arithmetic.

While the actions required at an event are easily iden-
tified for separate events – remember that all intersec-
tions are transversal – some care must be taken if several
events coincide. If we have such a multi-event we know
the order before sweeping across the event for at least
one pair of functions intersecting at the event. This
information can be used to identify the corresponding
bitangent ray. Once we know the ray, we can use it to
detect the order of functions after processing the multi-
event.

We can merge two lower envelopes and finally com-
pute L̂S solely using predicates that involve just ratio-
nal arithmetic. With the use of homogeneous coordi-
nates, even integer arithmetic suffices. Since the alge-
braic degree of the arithmetic expressions involved is
low, namely one, the application of floating-point fil-
ters and even number types based on expression dags
and separation bounds becomes feasible. Such number
types are particularly user-friendly since they encapsu-
late and hide all implementation details of exact com-
putation [1, 8].

Whereas tangency points on bitangent rays have ra-
tional coordinates by Lemma 3, the tangency point on
a ray tangent to a circle with given squared radius γ

centered at p = (px, py) has irrational coordinates in
general. The x-coordinate of the tangency point of such
a ray is

X1,2 =
2 px(p2

x + p2
y − γ) ± 2

√

γp2
y(p

2
x + p2

y − γ)

2 (p2
x + p2

y)

This holds for γ = δ2
min in particular. Thus, the tan-

gency point on a ray corresponding to a highest point
on LS might have irrational coordinates. However,
Lemma 2 guarantees the existence of an equivalent op-
timal bitangent ray corresponding to a highest point on
L̂S which has a rational direction vector. Thus, looking
at L̂S instead of LS is an essential part of our approach.

5 Conclusion

We have shown that the optimal algorithm of [5]
for computing a largest empty anchored cylinder in
the plane can be implemented using simply rational
arithmetic, thereby smoothing the way for efficient
exact geometric computation. Unfortunately, for
largest empty anchored cylinders in three-dimensions,
a very different approach is used in [5] and our results
do not immediately extend. Largest empty anchored

cylinder computation in the plane is an exemplary
geometric problem where a careful implementation and
a careful analysis of the algebraic degree of the involved
arithmetic expressions reveals an arithmetic demand
much smaller than expected.

Acknowledgments: The author would like to thank
Michiel Smid for helpful discussions and an anonymous
reviewer for useful suggestions.

References

[1] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra.
Efficient exact geometric computation made easy. In
Symposium on Computational Geometry, pages 341–
350, 1999.

[2] C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and
S. Schmitt. A separation bound for real algebraic
expressions. In European Symposium on Algorithms,
pages 254–265, 2001.

[3] D. A. Cox, J. B. Little, and D. O’Shea. Using Algebraic

Geometry. Springer-Verlag, 1998.

[4] CGAL. http://www.cgal.org.

[5] F. Follert, E. Schömer, J. Sellen, M. Smid, and C. Thiel.
Computing a largest empty anchored cylinder, and re-
lated problems. Internat. J. Comput. Geom. Appl.,
7:563–580, 1997.

[6] S. Fortune. Progress in computational geometry. In
R. Martin, editor, Directions in Computational Geom-

etry, pages 81–128. Information Geometers, 1993.

[7] L. J. Guibas and M. Sharir. Combinatorics and algo-
rithms of arrangements. In J. Pach, editor, New Trends

in Discrete and Computational Geometry, volume 10 of
Algorithms and Combinatorics, pages 9–36. Springer-
Verlag, Heidelberg, 1993.

[8] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A
core library for robust numeric and geometric computa-
tion. In Symposium on Computational Geometry, pages
351–359, 1999.

[9] K. Mehlhorn and S. Näher. LEDA: A Platform for

Combinatorial and Geometric Computing. Cambridge
University Press, Cambridge, UK, 2000.

[10] S. Pion and C. K. Yap. Constructive root bound for
k-ary rational input numbers. In Symposium on Com-

putational Geometry, pages 256–263, San Diego, USA,
2003.

[11] S. Schirra. Robustness and precision issues in geomet-
ric computation. In J.-R. Sack and J. Urrutia, edi-
tors, Handbook of Computational Geometry, chapter 14,
pages 597–632. Elsevier Science Publishers, 2000.

[12] C. K. Yap. Towards exact geometric computation.
In Canadian Conference on Computational Geometry,
pages 405–419, 1993.

[13] C. K. Yap. Robust geometric computation. In J. E.
Goodman and J. O’Rourke, editors, Handbook of Dis-

crete and Computational Geometry, 2nd edition. CRC
Press LLC, Boca Raton, USA, 2004.

4

