
Computational Geometry on Optical Multi-Trees (OMULT) Computer
System

Rabiul Islam, Nahid Afroz, Subir Bandyopadhyay∗ and Bhabani P Sinha†

Abstract

This paper presents simple and efficient algorithms
for fundamental computational geometry problems on
OMULT (Optical Multi-Trees) system [5] that uses both
electronic and optical links among processors. We show
that the algorithms for convex hull and the smallest en-
closing box can be computed on this network in O(log n)
time, compared to O(

√
n) algorithms on the OTIS-

Mesh[6] for each of these problems.

1 Introduction

In order to achieve better execution performance of
computer systems through parallelization, there have
been considerable efforts in designing interconnection
networks for parallel computers over the last few
decades. One of the recent architectures for this purpose
is the Optical Interconnect System [3], [4], [7] in which
processors are partitioned into groups so that processors
within each group are interconnected by electronic links
and processors in different groups are interconnected by
optical links. The Optical Transpose Interconnect Sys-
tem (OTIS) proposed by Marsden et al [4] is an example
of such a hybrid architecture and various fundamental
algorithms have been conveniently implemented on the
OTIS [6].

Recently, Sinha and Bandyopadhyay [5] have intro-
duced another opto-electronic computer system, called
the Optical Multi-Trees (OMULT). Basic broadcast
operations like single data broadcast, row/column
group-broadcast, complete group-broadcast on the
OMULT topology can all be done in O(log n) time
[5]. Fundamental algorithms such as the summa-
tion/average/maximum/minimum of n3 elements, pre-
fix computation of n2 elements, multiplication of two
n × n matrices can all be done in O(log n) time, and
n2 elements can be sorted in O(log2 n) time on the
OMULT system [5]. On the OTIS-Mesh, various fun-
damental problems in computational geometry were ef-
ficiently mapped by Wang and Sahni [6]. For example,
finding the

∗School of Computer Science, University of Windsor, Ontario,
Canada, subir@uwindsor.ca

†Indian Statistical Institute, Calcutta, India,
bhabani@isical.ac.in

i) convex hull (CH),
ii) the smallest enclosing box (SEB),
iii) the empirical cumulative distribution function

(ECDF) and
iv) all-nearest neighbor(ANN) problem
were solved on an OTIS-Mesh in O(

√
n) time for n

data inputs. In this paper, we present the algorithms
for the CH and the SEB algorithms on the OMULT
system that can be solved only in O(log n) time for n
data inputs. The ECDF and the ANN problems could
not be presented here due to lack of space.

The paper is organized in the following way. In sec-
tion 2, we briefly present the basic topological features
of the OMULT system. In section 3, we describe our
proposed algorithms for solving the above mentioned
problems in computational geometry using the OMULT
system. Finally, we conclude in section 4.

Figure 1: Optical Multi-Trees (OMULT) System

2 OMULT Topology

Figure 1 shows the schematic diagram of the Optical
Multi-Trees (OMULT) architecture1 [5] which uses n2

complete binary trees Tij ’s (1 6 i, j 6 n) each having n
leaf nodes and n− 1 internal nodes, as the basic build-
ing blocks. These n2 trees are organized in the form
of an n × n array. Nodes (processors) in an individ-
ual tree are all connected by electronic links and those
in different trees are connected by bi-directional optical
links in both horizontal and vertical directions accord-
ing to rules given below. To describe the architecture,

1All optical interconnections are not shown for clarity

1

Figure 2: Set of points

we label the nodes in each tree Tij , (1 6 i, j 6 n), by
distinct integers from 1 to 2n− 1 in reverse level order,
i.e., the leaf nodes in each tree are numbered from 1 to
n, in order from left to right, and the internal nodes
are also numbered from left to right in successive lower
levels (the root node being at the lowest level - level
0). Thus, the root node in each tree is given the node
number 2n− 1, and the node k in a tree Tij will be re-
ferred to by the processor node P (i, j, k), (1 6 i, j 6 n),
(1 6 k 6 2n − 1). The total number of nodes in the
system is N = n2(2n− 1) = 2n3−n2. The optical links
are given by the following rules:
1. Bi-directional horizontal interconnection between
processors P (i, j, k) and P (i, k, j), 1 6 i, j, k 6 n, if
j 6= k.
2. Bi-directional vertical interconnection between pro-
cessors P (i, j, k) and P (k, j, i), 1 ≤ i, j, k ≤ n, if i 6= k.
3. Bi-directional interconnection between processor
P (i, j, k) and P (i, j, 2n − 1), 1 ≤ i, j, k ≤ n, if i = k
and/or j = k.

3 Mapping of Algorithms in Computational Geom-
etry

3.1 Convex Hull

To find the convex hull [8] for a given set of points S on a
plane (|S| = n), we need to identify the extreme points.
We assume that no three points in S are collinear. Fig-
ure 2 shows an example for the set of points S and
Figure 3 shows the corresponding convex hull of S. Cor-
responding to a point piεS, let pi0, pi1, ..., pi,n−2 be the
points in S − pi, (i.e., pik 6= pi for 0 ≤ k ≤ n − 2),
sorted by the polar angle made by the vector −−−→pipik,
0 ≤ k ≤ n − 2. Then, by the results shown in [6],
pi is an extreme point of S if the counterclockwise an-
gle between some pair of consecutive vectors −−−→pipik and−−−−−−−−→pipi,|k+1|n−1 is more than π. For example, for S = a, b, c,
if the counter-clockwise angle (polar angle) between the
vectors

−→
ab and −→ac, as shown in Figure 5, is greater than

π, then point a is an extreme point.
Figure 5 shows a set of points S = {a, b, c, d, e, f, g},

for which an extreme point is illustrated in Figure 6.
The counterclockwise angle between the vectors −→ea and−→eg is more than π, so e is an extreme point, whereas
c is not an extreme point shown in Figure 7 because
the counterclockwise angle between no two consecutive

Figure 3: Convex hull for the points shown in Figure 2

Figure 4: Polar angle

g

a

e

c
b d

f

Figure 5: Set of points

vectors (sorted by their polar angles) originating at the
point c is more than π.

Based on the above property, we describe below our
proposed algorithm for finding the convex hull for a
set of points S = {p1, p2, ..., pn}, no three of which
is collinear. We assume that each processor P (i, j, k)
in the OMULT system has two registers A(i, j, k) and
B(i, j, k), where we would use the A-register for any
data movement operation. The coordinates of all n
points are initially stored in the A-registers of the leaf
nodes of the tree T11.

3.1.1 Algorithm CH :

Step 1: /* move coordinates of pi and pj to the tree
Tij */

Step 1.1 : /* using horizontal optical links, move
data from T11 to T1j , 1 ≤ j ≤ n */

∀j, 1 ≤ j ≤ n, do in parallel
A(1, j, 1) ← A(1, 1, j);

Step 1.2 : /* broadcast data within each tree T1j */
∀j, k, 1 ≤ j, k ≤ n, do in parallel
A(1, j, k) ← A(1, j, 1);

Step 1.3 : /* using vertical optical links, move data
from T1j to Tij , 1 ≤ i, j ≤ n*/

∀i, j, 1 ≤ i, j ≤ n, do in parallel
A(i, j, 1) ← A(1, j, i);

Step 1.4 : /* broadcast data within each tree Tij */
∀i, j, k, 1 ≤ i, j, k ≤ n, do in parallel
A(i, j, k) ← A(i, j, 1);

Step 1.5 : /* using horizontal optical links, move
data across tree Tij , ∀i, 1 ≤ i, j ≤ n */

2

g

a

e

c
b d

f

Figure 6: e is an extremum point

g

a

e

c
b d

f

Figure 7: c is not an extremum point

∀i, j, k, 1 ≤ i, j, k ≤ n, do in parallel
A(i, k, j) ← A(i, j, k);

/∗ After step 1.5, all pi values, 1 ≤ i, j ≤ n, are stored
in the leaf nodes of each tree ∗/

Remark : After step 1, the A-registers of the pro-
cessors P (i, j, i) and P (i, j, j), 1 ≤ i, j ≤ n, in the leaf
nodes of the tree Tij store the coordinate values of the
points pi and pj , respectively.

Step 2 : ∀i, j, 1 ≤ i, j ≤ n, compute the vector −−−→pipik

in the tree Tij , and store it in the register A(i, j, 2n−1)
of the respective root node. (Note that for i = j, a 0
value will be stored for the vector).

Step 3 : /* Broadcast the vector −−−→pipik to all trees
Tij , 1 ≤ j ≤ n in the same row */

Step 3.1 : /* using electronic links */
∀i, j, k, 1 ≤ i, j, k ≤ n, do in parallel
A(i, j, k) ← A(i, j, 2n− 1);

Step 3.2 : /* using horizontal optical links */
∀i, j, k, 1 ≤ i, j, k ≤ n, do in parallel
A(i, k, j) ← A(i, j, k);
B(i, k, j) ← A(i, k, j);

Remark : After step 3.2, both A(i, j, k) and
B(i, j, k), 1 ≤ i, j, k ≤ n, store the vector −−−→pipik origi-
nating at point pi.

Step 4 : Sort the n vectors −−−→pipik (including the zero
vector) stored in the leaf nodes of the trees Tij , 1 ≤
i, j ≤ n in the order of their polar angles by rank com-
putation, in a manner similar to that described in the
algorithm SORT in [5]. The A-register in each proces-
sor will still be used for data movements across differ-
ent processors needed for this rank computation. Store
the sorted list of vectors −−−→pipik for all k, 1 ≤ k ≤ n, in
order from left to right in the leaf nodes of the tree
Tij , 1 ≤ i ≤ n.

Step 5 : Broadcast the sorted list of vectors in
Tij , 1 ≤ i ≤ n to leaf nodes of all trees Tij , 1 ≤ i, j ≤ n
in the same row.

Step 6 : Assuming that the sorted list of vectors in
Tij is (0, pipi0, pipi1, ..., pipiq), where q = n− 2, pik 6= pi

for 0 ≤ k ≤ q, compute the counterclockwise polar angle
between vectors −−−→pipik and −−−−−−−−→pipi,|k+1|n−1 in the tree Tij ,
where pik is actually the point pj , and store it in the
processor P (i, j, 2n− 1).

Step 7 : If the polar angle computed in any tree
Tij , (where pik = pj) is more than π, then point
pi is an extreme point formed by the sides −−−→pipik and−−−−−−−−→pipi,|k+1|n−1 , and this information is conveyed to the
processor P (i, 1, 1) in Ti1 by setting an appropriate tag
bit (tag = 1, if pi is an extreme point, and 0 otherwise)
along with the 3-tuple (pik, pi, pi,|k+1|n−1). This is ac-
complished by first transferring the above information
from P (i, j, 2n−1) to P (i, j, 1) in log n steps, then from
P (i, j, 1) to P (i, 1, j) in one step by using a horizon-
tal optical link, and then from P (i, 1, j) to P (i, 1, 1) in
2 log n steps. Next move the information regarding all
such convex hull points to the leaf nodes of the proces-
sors P (1, 1, k), 1 ≤ k ≤ n, in the tree T11, in one step
using the vertical optical links.

3.1.2 Time Complexity :

Steps 1.2 and 1.4 need 2 log n data transfer steps each.
Hence, step 1 needs 4 log n + 3 time units. Step 2 needs
log n time units. Also, step 3.1 requires log n time units.
Step 3.2 needs 2 time units. Step 4 will require 3 log n+2
time units. Step 5 needs 2 log n + 3 time units. Step
6 needs log n time units. Step 7 requires 3 log n + 3
time units (assuming that setting the tag bit and related
information about an extreme point requires one time
unit). Hence, we have the following result.

Theorem 1 Algorithm CH computes the convex hull of
n points in O(log n) time.

4 Smallest Enclosing Box

In the smallest enclosing box (SEB) problem, given a
set S of coplanar points, we are to find a minimum area
rectangle that encloses all points in S [6]. Freeman and
Shapiro showed [1] that the SEB of S has one side that is
collinear with an edge of the convex hull of S and that
the remaining three sides of the SEB pass through at
least one convex hull vertex each. We describe below the
algorithm for solving the SEB problem on the OMULT
system.

4.0.3 Algorithm SEB

Step 1 : /* compute the convex hull vertices and
store the corresponding information in the leaf nodes of
the tree T11 */
∀i, 1 ≤ i ≤ n, do in parallel
if (point pi is a convex hull vertex) then P (1, 1, i) ←

(pik, pi, pi,|k+1|n−1)
else P (1, 1, i) ← 0;

3

Step 2 : Sort the convex hull vertices in the order of
their polar angles using the sort algorithm described in
[5].

Step 3 : Broadcast the information about the convex
hull vertices from T11 to all trees Ti1, 1 ≤ i ≤ n.

Step 4 :
i) ∀i, 1 ≤ i ≤ n, compute the ith hull edge

(pi, pi,|k+1|n−1) in Ti1 and broadcast to the leaf nodes
1, 2, . . . , n of the trees Tij , 1 ≤ j ≤ n in the same row.

ii) broadcast all the hull vertices to the leaf nodes of
Tij , 1 ≤ i, j ≤ n (node P (i, j, j) gets the relevant infor-
mation regarding the vertex pj , if pj is a hull vertex).

Step 5 :
i) If pj is a hull vertex, ∀i, j, 1 ≤ i, j ≤ n, using the

leaf node P (i, j, j), compute the height d1 between the
hull vertex pj and the hull edge (pi, pi,|k+1|n−1).

ii) Compute, using P (i, j, j), the perpendicular bisec-
tor L of the hull edge (pi, pi,|k+1|n−1).

iii) Calculate, using P (i, j, j), the distance d2 from
the vertex pj to this perpendicular bisector L.

iv) If pi and pj are on the same side of L, using pro-
cessor P (i, j, j), set left ← d2 and right ← 0; otherwise
using processor P (i, j, j), set left ← 0 and right ← d2.

Step 6 :
i) ∀i, j, 1 ≤ i, j ≤ n, store in the root node P (i, j, 2n−

1), the values of the height, left, and right computed in
step 4

ii) send the values stored in P (i, j, 2n−1) to the node
P (i, 1, j) of the tree Ti1 (via P (i, j, 1)).

Step 7 : Compute ∀i, 1 ≤ i ≤ n,
hmax, the maximum of all height values in processors

P (i, 1, j),
rmax, the maximum of all right values in processors

P (i, 1, j),
lmin, the minimum of all the left values in processors

P (i, 1, j),
Store the results in the leaf nodes of Ti1 to find the far-

thest, rightmost and leftmost points, respectively from
the point pi.

Step 8 : ∀i, 1 ≤ i ≤ n compute, in processor P(i, 1,
2n-1), the area Ai = hmax(rmax − lmin).

Step 9 : ∀i, 1 ≤ i ≤ n, move the value of the area Ai

from P (i, 1, 2n− 1) to the leaf node P (1, 1, i) . (This is
done by first moving Ai to P (i, 1, 1) in log n steps and
then to P (1, 1, i) in one step).

Step 10 : Find the minimum of all area values in the
leaf nodes of the tree T11 (relevant information regard-
ing the bounding edges may also be transferred in step
8 along with each Ai value).

4.0.4 Time Complexity

Each of steps 1, 5 and 8 needs constant time, while each
of the remaining steps needs O(log n) time. Hence, we
have the following result.

Theorem 2 Algorithm SEB computes the smallest en-
closing box of a given set of n points in O(log n) time.

5 Conclusion

A number of efficient algorithms for computational ge-
ometry problems - finding the convex hull, the small-
est enclosing box, the empirical cumulative distribution
function and the all-nearest neighbor have been devel-
oped on OMULT architecture. Due to lack of space
only the first two algorithms have been described here.
All the algorithms uses n data elements and time com-
plexity is only O(log n). It should be noted, however,
that the number of processors involved in OMULT is
O(n3) as opposed to OTIS-mesh which requires O(n2)
processors. If we compare the performances of these al-
gorithms implemented on the OMULT architecture with
those implemented on the OTIS-Mesh, it is clear that
the OMULT architecture performs better.

6 Acknowledgement

This research was supported by a grant from the Natural
Science and Engineering Research council of Canada.

References

[1] H. Freeman and R. Shapiro,“Determining the minimal-
area encasing rectangle for an arbitrary closed curve”,
Communications of ACM, 18:409 413, 1975.

[2] J-W. Jang, M. Nigam, V.K. Prasanna, S. Sahni, “Con-
stant time algorithms for computational geometry on
the reconfigurable mesh”, IEEE Trans. on Parallel and
Distr. Sys., Vol: 8, Iss: 1 , pp: 1 -12, Jan. 1997.

[3] A. Krishnamoorthy, P. Marchand, F. Kiamilev and
S. Esener. “Grain-size considerations for optoelectronic
multistage interconnection networks”, Applied Optics,
Vol. 31, No. 26, pp. 5480-5507, September 1992.

[4] G. C. Marsden, P. J. Marchand, P. Harvey and S. C.
Esener. “ Optical transpose interconnection system ar-
chitectures” Optical Letters, Vol. 18, No. 13, pp. 1083-
1085, July 1993.

[5] B.P Sinha and S. Bandyopadhyay, “OMULT: An Op-
tical Interconnection System for Parallel Computing”,
presented at the EUROPAR’04, Pisa, Italy.

[6] C-F Wang and S. Sahni, “Computational geometry on
the OTIS-Mesh opto-electronic computer”, Proceedings
International Conference on Parallel Processing, pp:
501 -507,18- 21 Aug. 2002.

[7] F. Zane, P. Marchand, R. Paturi and S. Esener, “Scal-
able network architectures using the optical transpose
interconnection system (OTIS)”, Journal of Parallel
and Distributed Computing, Vol. 60, No. 5, pp. 521-
538, 2000.

[8] F. P. Preparata and M. I. Shamos, “Computational ge-
ometry an introduction”, Springer-Verlag, 1985.

4

