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Abstract

The flow complex is a data structure, similar to the
Delaunay triangulation, to organize a set of (weighted)
points in Rd. Its structure has been examined in detail
in two and three dimensions but only little is known
about its structure in general. Here we propose the first
algorithm for computing the flow complex in any di-
mension which reflects its recursive structure. On the
basis of the algorithm we give a generalized and sim-
plified proof of the homotopy equivalence of alpha- and
flow-shapes.

1 Introduction

The flow complex of a set of points has been successfully
applied to surface reconstruction from a point cloud [5],
to shape segmentation and matching [1], and to model-
ing properties of macromolecules in bio-geometry [4]. It
is a cell complex based on the flow in the direction of the
steepest ascent of the power distance function to a given
set of weighted points. It is therefore closely related to
the Voronoi diagram and the Delaunay triangulation,
i.e., in the case of weighted points to the power diagram
and the regular triangulation (see e.g. [8]).

So far the flow complex was only defined in two and
three dimensions [4, 5]. The purpose of this paper is
to give insight into the general structure of the complex
independent of dimension. These insights lead to an al-
gorithm for computing the flow complex of (weighted)
points in any dimension, which reveals a recursive struc-
ture of the flow complex. We use this recursive structure
to give a general proof of the homotopy equivalence of
flow- and α-shapes [2].

2 Induced Flow and Flow Complex

Given a set of weighted points P = {(p, wp) ∈ Rd ×R}.
Let πp : Rd → R, x 7→ ‖x − p‖2 − wp be the (power)
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Figure 1: One-dimensional example of flow induced by
a set of weighted points.

distance to p. We define a vector field v : Rd → Rd as
follows:

For any point x ∈ Rd let A(x) ⊂ P be nearest neigh-
bors of x in P . The point d(x) = argminy∈conv(A(x))‖x−
y‖2 is called the driver of x. The vector v(x) is de-
fined as x − d(x)/‖x − d(x)‖ if d(x) 6= x and 0 oth-
erwise. One can show that v(x) 6= 0 always points in
the direction of steepest ascent of the distance func-
tion h(x) = min{πp(x) | p ∈ P} at x, otherwise, i.e., if
v(x) = 0, there is no direction of steepest ascent of h
at x and we call x a critical point of h. Our notion of
a critical point is in accordance with a well developed
theory of critical points of distance functions, see [6].

Consider the one-dimensional example in Figure 1.
The input points in P are shown as black dots, the
weight wp of each point is the signed distance from the
point to the apex of the parabola below (positive weight)
or above (negative weight) it. The graph of the distance
function h is the lower envelope of the parabolas and the
vector field v is indicated by arrows.

The flow complex is a decomposition of Rd into cells
based on the flow along the vector field v. A point that
follows this flow either reaches a point x with v(x) = 0,
i.e., a critical point of h, from which it cannot escape,
or it leaves any bounded region of Rd in finite time, i.e.,
the point flows to infinity. Thus the critical points of h
are the fixed points of the flow.

The stable manifold of such a fixed point is the set of
all points in Rd that flow into the point. The cells of the
flow complex are the closures of the stable manifolds of
the fixed points.
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3 Algorithm

Since the flow complex consists of the closures of the
stable manifolds of the fixed points of the distance func-
tion, we have to compute all these closures in order to
compute the flow complex. The algorithm that we are
going to present makes use of the close relationship of
the flow complex to the Delaunay and Voronoi diagram
of P In the following the terms Delaunay and Voronoi
diagram always include also the weighted versions.

Observation 1

(1) The critical points of the distance function h are the
intersection points of Delaunay objects and their
dual Voronoi objects.

(2) The driver of a point x ∈ Rd is the point closest to
x in the Delaunay object dual to the lowest dimen-
sional Voronoi object containing x.

(3) All points in the relative interior of a Voronoi object
have the same driver.

(4) Let V, V ′ be Voronoi objects with V ′ ( V , let dr
be the driver of V . If no line segment connecting a
point of V ′ with dr intersects the relative interior
of V then dr is also the driver of V ′.

(5) The flow into a Voronoi object must come from
Voronoi objects containing this object or through
its boundary.

See [7] for proofs of these observations. The follow-
ing algorithm builds on these observations and yields a
description of the closure of a stable manifold as a poly-
hedral complex. For a convex set C let ri(C) denote its
relative interior. Figure 2 illustrates the algorithm by
the example of a two–dimensional weighted point set.

Inflow(convex polytope P , Voronoi object V )
1 inflow := {P}
2 for each Voronoi obj. V ′ with V ( V ′

do

3 dr := driver for the Voronoi object V ′

4 pyr := ri(conv(P, dr))
5 if pyr ∩ V ′ 6⊆ P do

6 V := {Vor. obj. V ′′ ⊆ V ′ | pyr ∩ ri(V ′′) 6⊆ V }
7 for each V ′′ ∈ V do

8 inflow := inflow ∪ Inflow(pyr ∩ V ′′, V ′′)
9 end for

10 end if

11 end for

12 return inflow

The algorithm works as follows: It is called with two
arguments, a convex polytope P and a Voronoi object V
with the property that the relative interior of P is con-
tained in the relative interior of V . We want to compute
the closure of the inflow area of the relative interior of

+
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Figure 2: A decomposition of a stable manifold as com-
puted by the algorithm with non-simplicial cells. The
recursive construction of such a cell (dark grey): P1 is a
maximum of the distance function, P2 = conv(P1, d1) ⊂
V , and P3 = conv(P2, d2) ∩ V ′, where V is a Voronoi
edge and V ′ is a Voronoi cell, whose drivers are d1 and
d2, respectively.

P of flow coming from Voronoi objects V ′ ⊆ V . We
assume that the flow coming from V itself is already in
P . Relative interiors are used to get a unique decompo-
sition of the Voronoi diagram and the stable manifolds.

Since the inflow has to contain P we add P to it in line
1 of the algorithm. To compute a stable manifold, we
initially call the function Inflow with the parameters c
and V , where c is a critical point of h, i.e., a fixed point
of the flow, and V is the lowest dimensional Voronoi
object that contains c (Observation 1.1).

In the general case we have to take care of the inflow
into the relative interior of P that comes through the
boundary of V or through higher dimensional Voronoi
objects that contain V in their boundary (Observa-
tion 1.5). Since the algorithm in line 2 only takes care
of the higher dimensional Voronoi objects we need to
guarantee that any flow coming through the boundary
of V has been handled when Inflow is called for P .

Note that in the special case of P = {c} there cannot
be any inflow from within the Voronoi object V (and
thus from the boundary of V ) since in this case c is the
unique driver of the relative interior of V that repels all
other points in this relative interior (Observation 1.3).

In the loop enclosed by lines 2 and 11 we take care of
the inflow via all Voronoi objects V ′ that contain V in
their boundary. The relative interior of any Voronoi ob-
ject V ′ has a unique driver dr (Observation 1.3) that we
determine in line 3 (using Observation 1.2). All points
that flow via V ′ into the relative interior of P have to
be contained in the intersection of V ′ with the relative
interior pyr of the pyramid whose apex is dr and whose
base is P . If V ′ does not contain its driver dr , i.e., if
dr is not a critical point, then the whole pyramid can-
not be contained in V ′ but is cut-off at the boundary
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of V ′. This can result in a non–simplicial cell as in the
example of Figure 2. In lines 5 to 10 we take care of
the inflow coming from V ′ and its boundary. By def-
inition V ′ is in V therefore the inflow into the cut-off
pyramid coming from higher-dimensional Voronoi ob-
jects is computed by a recursive call of the algorithm in
line 9. By construction there is no additional flow from
the relative interior of V ′ (Observation 1.3).

We now handle flow into the cut–off pyramid com-
ing from the boundary of V ′ by considering all possible
cases. The polytope P is not driven into V ′. If the
driver dr of V ′ lies on the boundary of V ′ has to be
a fixed point and is therefore not driven into V ′. Any
further point that is in the closure of pyr but outside
pyr is driven past it by the common driver dr (Observa-
tion 1.4). Therefore, any flow coming from the bound-
ary of V ′ must come from points in pyr which are taken
care of in line 6. The recursion stops when there is no
more inflow through higher dimensional Voronoi objects
or through the boundary of a Voronoi object to consider.

4 Homotopy Equivalence

In the following we generalize and simplify the proof of
the homotopy equivalence of α- and flow-shapes using
the recursive structure of the flow-complex as it is in-
herently described in the above algorithm. Let us first
review some definitions.

Union of balls and α-complex. Let P be a finite set
of weighted points in Rd. Let Bα(P ) be the set of balls
centered at the points in P with radius

√
α + wp, pro-

vided p ∈ Pα := {p ∈ P |α + wp ≥ 0} The union of
balls is the underlying space |Bα(P )| :=

⋃
b∈Bα(P ) b

= {x ∈ R3 : ∃ p ∈ Pα such that πp(x) ≤ α}.
The α-complex Kα(P ) of P is the dual complex of

the Voronoi diagram of P restricted to the union of
balls |Bα(P )|. By construction the α-complex is a sub-
complex of the Delaunay complex for every α ≥ 0. In
fact the family of α-complexes is a filtration of the De-
launay complex. The underlying space of an α-complex
is called α-shape.

The following theorem is due to Edelsbrunner [3].

Theorem 1 For every α ≥ 0 the union of balls |Bα(P )|
and the α-shape |Kα(P )| are homotopy equivalent.

We also have a natural filtration of the flow complex.
We denote the sub-complex of the flow complex that
contains all stable manifolds of critical points at which
the distance function h takes a value no more than α ≥ 0
as Fα(P ). The underlying space |Fα(P )| is called flow-
shape.

By Theorem 1 it is sufficient to prove the homotopy
equivalence of |Fα(P )| and |Bα(P )|. By definition the
flow shapes do not change between the critical levels of
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Figure 3: The dashed spheres can be retracted to the
smaller spheres with the gray part glued in by recur-
sively retracting them in directions of hyperplanes con-
taining the centers.

the distance function. From the critical point theory of
distance functions [6] we get that the homotopy of the
union of balls does not change between critical levels:

Theorem 2 If the interval [α, α′] ⊂ [0,∞) does not
contain any critical level of h, i.e., there is no critical
point x ∈ Rd of h with h(x) ∈ [α, α′], then |Bα(P )| is
homeomorphic to |Bα′

(P )|, and |Bα(P )| is a deforma-
tion retract of |Bα′

(P )|.

We therefore only need to consider the situation at
critical levels. The following lemma describes how the
homotopy of the union of balls changes at critical levels.
It is illustrated in Figure 3. It generalizes an observation
by Siersma [9] for the union of circles in two-dimensions.

Lemma 3 Let α be a critical level of the distance func-
tion and x the only critical point of level α. Assume x
is not a minimum. Let ε > 0 be chosen such that the
ε-neighborhood of α does not contain any critical level
of h except α. Let D be the Delaunay object defining x
(see Observation 1.1) and let Dε := closure(D\|Bα−ε|).
For ε sufficiently small it holds that Dε is a topologi-
cal ball (of the same dimension as D), and |Bα+ε| and
|Bα−ε| ∪ Dε are homotopy equivalent.

The main theorem of this section is the following.
In its proof we use the symbol ' to denote homotopy
equivalence.

Theorem 4 Let P be a finite set of weighted points in
Rd. For every α ≥ 0 the α-shape |Kα(P )| and the flow-
shape |Fα(P )| are homotopy equivalent.

Proof. By Theorem 1 |Bα(P )| and |Kα(P )| are ho-
motopy equivalent for all α ≥ 0. It is therefore suf-
ficient to prove the homotopy equivalence of |Bα(P )|
and |Fα(P )|. The homotopy type of both |Bα(P )| and
|Fα(P )| changes only at critical levels of the distance
function h. We therefore prove their homotopy equiva-
lence by induction over the critical levels of the distance
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function. We may assume without loss of generality that
all points have non-positive weights. For α = 0 we have
|Bα(P )| = P0 = |Fα(P )|, where P0 is the set of points
of weight 0.

Let 0 = α0 < α1 < . . . < αn be the critical levels of
h and assume that |Bα(P )| and |Fα(P )| are homotopy
equivalent for all α ≤ αi−1+ε, where ε > 0 has to satisfy
the following:

(i) The ε-neighborhood of any critical level αj does not
contain any other critical level.

(ii) For any critical point x of h it can be seen from the
recursive construction of the stable manifold S of
x in the algorithm Inflow that there exists εx > 0
such that Dεx

⊂ S, where Dεx
= D \ |Bα−εx |. We

need that 0 < ε < min {εx |x critical point}. Note
that there can be only finitely many critical points
of h by Observation 1.1.

In the induction step, we want to prove the homotopy
equivalence of |Bα(P )| and |Fα(P )| for all α ≤ αi + ε.

Let x ∈ h−1(αi) be a critical point of h. Without loss
of generality x is the only critical point in h−1(αi). If
x ∈ P then the equivalence is straightforward: in both
complexes a new component homotopy equivalent to a
point appears. Assume x /∈ P . Suppose |Fαi(P )|\Dε '
|Fαi−1(P )|, where Dε is as in Theorem 2. We have

|Fαi(P )| \ Dε ' |Fαi−1(P )| = |Fαi−1+ε(P )|
' |Bαi−1+ε(P )| ' |Bαi−ε(P )|,

where equality follows from the fact that flow shapes
only change at the critical levels, the homotopy equiv-
alences in the second line follow from the induction hy-
pothesis, Theorem 2 and our assumption on ε. Since by
construction the boundary of Dε is contained in both
the boundary of |Fαi(P )| \ Dε and in the boundary of
|Bαi−ε(P )| we get a homotopy equivalence, |Fαi(P )| =
(|Fαi(P )| \Dε)∪Dε ' |Bαi−ε(P )| ∪Dε. That is, we get
using Lemma 3,

|Bαi+ε(P )| ' |Bαi−ε(P )| ∪ Dε

' |Fαi(P )| = |Fαi+ε(P )|.

Hence the union of balls |Bαi+ε(P )| and the flow shape
|Fαi+ε(P )| have the same homotopy type at level αi+ε.
Since we know that the flow shape and the union of
balls can change their homotopy type in the interval
[αi − ε, αi + ε] only at the critical level αi we have that
they are homotopy equivalent for all 0 ≤ α ≤ αi + ε.

That leaves us to show that |Fαi(P )| \ Dε '
|Fαi−1(P )| holds. Let S be the closure of the stable
manifold of x and let ∂S be its relative boundary. Con-
sidering the local situation the above can be restated as
S \ Dε ' ∂S. We prove this by giving a deformation
retract using the structure of S inherently described by

the algorithm Inflow. The algorithm processes a se-
quence of Voronoi objects (its second argument). For
the proof we rearrange the order of processing these
Voronoi objects in a breadth first manner: We collect
all flow from higher dimensional Voronoi objects before
we collect flow from the boundary of a Voronoi object.

This gives us a hierarchy as follows: we start with
a point (the critical point) and a Voronoi object V it
is contained in. Then we process all Voronoi objects
that contain V together with some higher dimensional
polytope. Whenever we process new flow coming from
the boundaries of previously processed Voronoi cells a
new step in the hierarchy starts. Assume that we have
m steps in the hierarchy and let Sj , j = 1, . . . , m be the
relative interior of the part of the stable manifold S of
x that has been constructed after finishing step j of the
hierarchy.

We first show that S \ Dε ' S \ S1. To this end con-
sider the boundary ∂S1 of S1. It has the structure of a
polyhedral complex and is visible from the critical point.
With Dε removed we can therefore retract to the bound-
ary of S1. Next we want to show that S\S1 ' S\S2. For
this we consider a cell P of ∂S1 ∩ S2 together with the
corresponding Voronoi object V . The proof proceeds
by showing that the area of flow onto P from higher-
dimensional Voronoi objects can be retraced starting at
P , the details are left out here because of space con-
straints. From this we get S \Dε ' S \ S2. In the same
way we can continue with the remaining steps in our
hierarchy and finally we get S \Dε ' S \ Sm = ∂S. �

References

[1] T. K. Dey, J. Giesen, and S. Goswami. Shape segmentation and

matching with flow discretization. In Proc. 8th Intern. Work-

shop on Algorithms and Data Structures, pages 25–36, 2003.

[2] T. K. Dey, J. Giesen, and M. John. Alpha-shapes and flow shapes

are homotopy equivalent. In Proc. 35th Symp. Theory of Com-
puting, pages 493–501. 2003.

[3] H. Edelsbrunner. The union of balls and its dual shape. Discrete

Computational Geometry, 13:415–440, 1995.

[4] J. Giesen and M. John. Computing the weighted flow complex.

In Proc. 8th International Fall Workshop Vision, Modeling,
and Visualization, pages 235–243, 2003.

[5] J. Giesen and M. John. The flow complex: A data structure for

geometric modeling. In Proc. 14th ACM-SIAM Sympos. Discr.
Algorithms, pages 285–294, 2003.

[6] K. Grove. Critical point theory for distance functions. In Dif-
ferential geometry: Riemannian geometry, volume 54 of Proc.

Sympos. Pure Math., pages 357–385. Amer. Math. Soc., 1993.

[7] M. John. Flow complexes : structure, algorithms and appli-
cations. PhD thesis, Technische Wissenschaften ETH Zürich,
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