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1 Introduction and problem statement

In the Nearest Neighbor problem (NN), the objects in
the database that are nearer to a given query object
than any other objects in the database have to be found.
In the conceptually inverse problem, Reverse Nearest
Neighbor problem (RNN), objects that have the query
object as their nearest neighbor have to be found. Re-
verse Nearest Neighbors queries have emerged as an im-
portant class of queries for spatial and other types of
databases. The concept has been introduced by Korn et
al. [10, 11], where a large number of applications in mar-
keting and decision support system are given. See [17]
for a recent survey on the current state-of-art and open
geometric problems in another application area.

The RNN problem itself has several variants, namely,
the monochromatic, bichromatic, static or dynamic ver-
sions. In the monochromatic case, all points have the
same color. In the bichromatic case, the point set con-
sists of both red and blue points and the problem is that
given a query point of one color, one needs to find the
points of the other color for which the query point is
a bichromatic nearest neighbor. In the static version of
the problem, the distances between the points in the set
remain unchanged whereas in the dynamic problem they
may change. Some related work includes [4, 12, 14, 16].

This paper considers the static bichromatic variant
in which the data points are of two categories. In par-
ticular, we define RNN facility location problems, in
which some points are designated as facilities and others
as customers. In this setting, a reverse nearest neigh-
bor query asks for the set of customers affected by the
opening of a new facility at some point, assuming all
customers go to their nearest facility. We study opti-
mization problems that arise when considering various
optimization criteria: maximizing the number of poten-
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¶Dept. de Matemáticas, Universidad de Huelva, partially sup-
ported by project BFM2003-04062, iventura@us.es

tial customers for the new facility (MAXCOV criterion);
minimizing the maximum distance to the associated
clients (MINMAX criterion); and maximizing the mini-
mum distance to the associated clients (MAXMIN crite-
rion). The MAXCOV and MINMAX criteria deal with
the location of an attractive facility, while the MAXMIN
criterion seeks the best location for a new obnoxious fa-
cility. Finally, observe that the MAXCOV criterion can
also be seen as a greedy step in a discrete version of the
Voronoi game [2].

In the sequel, unless otherwise specified, we use the
L2 metric and d(p, q) denotes the Euclidean distance
between the points p and q. Let S = {p1, . . . , pN} be
a set of points in the plane. Given a point b in the
plane, the reverse nearest neighbor set of b is defined as
RNN(b) = {pi ∈ S : d(pi, b) ≤ d(pi, pj), ∀pj ∈ S\{pi}}.
For the bichromatic case, assume we have a nonempty
set R = {r1, . . . , rn} of n red points (clients) and a
nonempty set B = {b1, . . . , bm} of m blue points (fa-
cilities), with n ≥ m ≥ 2. Given a new query blue
point b /∈ B, the bichromatic reverse nearest neighbor
set is defined as BRNN(b) = {ri ∈ R : d(ri, b) ≤
d(ri, bj), ∀bj ∈ B}. Notice that the monochromatic and
bichromatic settings differ on, for example, the size of
the output of the queries, as it is stated in the following
result.

Lemma 1 [15] For any query point, the set RNN(b)
has at most 6 points, but the size of BRNN(b) may be
arbitrarily large.

Notice that for any blue point b /∈ B, it holds that 0 ≤
|BRNN(b)| ≤ n. Notice also that if ri ∈ BRNN(b),
then (by definition) the open disk centered at ri and
radius d(ri, b) is empty of blue points. We formalize the
optimization problems as follows.

The MAXCOV problem Given a set S = R ∪ B,
compute the value MAXCOV(S)= max{|BRNN(b)| :
b ∈ R

2 \ B}, i.e., compute the maximum number
of points that BRNN(b) may have for a new point
b /∈ B, and find a witness placement b0 such that
|BRNN(b0)| =MAXCOV(S).

In the MAXCOV problem, we are interested in
computing the locus LS of all points b satisfying
|BRNN(b)| = MAXCOV(S). More generally, for any
positive integer k, we are interested in the level set
L(k) = {b ∈ R

2 : |BRNN(b)| ≥ k}. Observe that
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L(MAXCOV (S)) = LS , and L(1) = {b ∈ R
2 :

BRNN(b) �= ∅}.

The MINMAX problem Given S = R ∪ B and a
region X ⊆ L(1), compute the value MINMAX(S) =
minb∈X max{d(b, x) : x ∈ BRNN(b)}, and find a wit-
ness placement b0 ∈ X such that max{d(b0, x) : x ∈
BRNN(b0)} = MINMAX(S).

The MAXMIN problem Given S = R ∪ B and a
region X ⊆ L(1), compute the value MAXMIN(S) =
maxb∈X min{d(b, x) : x ∈ BRNN(b)}, and find a wit-
ness placement b0 ∈ X such that min{d(b0, x) : x ∈
BRNN(b0)} = MAXMIN(S).

Notice that for both the MINMAX and MAXMIN
problems we add the additional constraint that the new
point b has to be placed in a given region X with
X ⊆ L(1), as otherwise we could always place b such
that BRNN(b) = ∅. We assume that X can be de-
scribed using O(n) pieces of constant complexity. Typ-
ically, we would consider X to be a level set L(k) for
some value k. Although for some values k, the level
set L(k) may have quadratic complexity in n, we will
see that we can handle this type of sets within the
same asymptotic bounds. Note that the MAXCOV and
MAXMIN/MINMAX criteria are of completely differ-
ent nature: the MAXCOV criterion maximize the num-
ber of points in a set, which is a discrete measure;
the MAXMIN/MINMAX criteria optimize a distance,
which a is continuous measure.

2 The MAXCOV problem

In this section we provide exact and approximate algo-
rithms for the MAXCOV problem, as well as a hardness
result for the exact problem.

For every red point ri ∈ R, we denote by b(ri) the
nearest blue point. Let Ri be the red disk with ra-
dius d(ri, b(ri)) centered at point ri. The set of n disks
{R1, . . . , Rn} can be computed in O(n log m) time as
follows: compute the Voronoi diagram of B and prepro-
cess it for point location; after O(m log m) time, a point
location query can be replied in O(log m) time. By lo-
cating each ri ∈ R in the Voronoi diagram, we get the
points b(r1), . . . , b(rn) in O(n log m), which is enough
information to construct the disks {R1, . . . , Rn}.

Let A be the arrangement produced by the set of n
red disks {R1, . . . , Rn}. The idea of the algorithm is to
associate a label lc to each cell c of A with the number
of disks from {R1, . . . , Rn} that contain it, and then
look for the cells in A with maximum label. This works
because if a cell c has label k, it means that a blue point
b inside this cell c is contained in exactly k red circles,
which means that the point b is the closest point of
the k red points corresponding to the red circles. The

arrangement A, together with the labels lc for each cell
c ∈ A can be constructed using the following result.

Theorem 2 [5, 13] The arrangement of n circles with
different radii can be computed by an incremental algo-
rithm with O(nλ4(n)) = O(n22α(n)) worst-case running
time or by a randomized incremental algorithm with
O(n2) expected running time.

Once we have computed the arrangement A, we can
construct the dual graph G of the arrangement contain-
ing a node for each cell c ∈ A and an edge between
two cells whenever their closure intersects. If two faces
c, c′ ∈ A are adjacent in G, it is easy to compute the
label lc′ from the label lc. Thus, making a traversal in
the dual graph G, we can compute the labels lc for all
faces c ∈ A. With this information, it is possible to
compute lc for all the edges and vertices c ∈ A. Special
care has to be paid if the arrangement is degenerate,
that is, if some circles in {R1, . . . , Rn} are tangent; de-
tails are standard and omitted. After computing lc for
all cells c ∈ A, we can find the value MAXCOV(S)
using that MAXCOV(S)= max{lc | c ∈ A} and re-
port the locus LS of all optimal placement using that
LS =

⋃
{c∈A:lc=MAXCOV(S)} c.

Theorem 3 The value MAXCOV(S) and the set of all
optimal placements LS can be computed in O(n22α(n))
worst-case running time or in O(n2) expected time.

Notice that we can construct any of the level sets
L(k) in the same running time. The level set L(1) is
exactly the union of the n disks R1, . . . , Rn, which can
be described in linear space and constructed in near-
linear time [9]. Once we have a level set L(k) under
the MAXCOV criterion, we may be interested in one
that optimizes the MAXMIN or MINMAX criteria. We
will show below how to deal with this. We next pass to
hardness of computing the optimum and approximation
algorithms.

Theorem 4 Computing MAXCOV(S) is 3SUM hard.

The proof of this theorem is similar to the one used
in [3]. For a set L of n lines with integer coefficients
and distinct slopes, it is 3SUM hard to determine if
three lines of L intersect in a common point [7]. We
reduce this problem to the problem of computing the
value MAXCOV(S).

In some applications, it may be that a quadratic time
algorithm is not affordable and we would be satisfied
with a placement for the new facility that is suboptimal
but such that the number of clients it gets, is close to the
optimal placement; in other words, and approximation
algorithm for the optimization problem. We have seen
that computing MAXCOV(S) is equivalent to finding
the maximum depth in A. It also follows that if we find
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a point b whose depth in A is d, then |BRNN(b)| = d,
and so MAXCOV(S)≥ d. A probabilistic algorithm to
find a point that (1 − ε)-approximates the maximum
depth in an arrangement of n disks is given by Aronov
and Har-Peled [3], and it readily leads to the following
result.

Theorem 5 Given a parameter ε > 0, an (1 − ε)-
approximation of the value MAXCOV(S) and a witness
placement can be computed in O(nε−2 log n) expected
time. The result is correct with high probability.

3 The MINMAX and MAXMIN problems

We are given a bichromatic set S = B ∪R formed by m
blue points B (facilities) and n red points R (clients),
n ≥ m ≥ 2, and a constraint region X ⊆ L(1).

According to the MINMAX criterion we are inter-
ested in finding a new blue point p ∈ X such that the
maximum distance to the points in BRNN(p) is min-
imized. Consider the cost function Cost : L(1) → R

that tells for each point p ∈ L(1) the cost, according to
the MINMAX criterion, of placing the new blue point,
or facility, at p; it holds that Cost(p) = max{d(p, x) :
x ∈ BRNN(p)}. Consider the graph of the function
Cost in 3D. In the following, we are going to give a
combinatorial description of this graph.

Embed the plane containing R, B in the plane z = 0
in 3D, that is, consider R, B as embedded in the xy-
plane in 3D. For a point ri = (xi, yi) ∈ R, consider
the cylinder Cyli = {(x, y, z) ∈ R

3 | (x − xi)2 +
(y − yi)2 ≤ (d(ri, b(ri)))2}, which is the vertical, solid
cylinder through the disk centered at ri with radius
d(ri, b(ri)), and consider the (surface) cone Coni =
{(x, y, z) ∈ R

3 | (x − xi)2 + (y − yi)2 = z2, z ≥ 0}
with apex at point (xi, yi, 0) ∈ R. Finally, let Σi be the
portion of the surface Coni contained in Cyli. Observe
that Σi is a surface patch with constant complexity.

The reason for considering Σi for each point ri is
the following: ρ = (x, y, t) ∈ R

3 is a point vertically
above (resp. below) Σi if and only if ri ∈ BRNN(x, y)
and d((x, y), ri) ≤ t (resp. d((x, y), ri) ≥ t). To see
the validity of this claim, observe that ρ has a vertical
above/below relation with ri if and only if ρ ∈ Cyli.
Moreover, by the way the cone Coni is defined, it holds
that ρ = (x, y, t) is above (resp. below) Coni if and only
if d((x, y), ri) ≤ t (resp. d((x, y), ri) ≥ t). Let U be the
upper envelope of surfaces Σ1, . . . , Σn. Using the dis-
cussion above we readily obtain the following property.

Lemma 6 The upper envelope U is the graph of the
function Cost.

We are interested in finding a point p ∈ X that mini-
mizes Cost, and therefore the problem reduces to find-
ing the lower point in the envelope U restricted to the

region X . Let UX be the portion of U defined over X . If
X has complexity O(n) we can argue that UX has com-
plexity O(n2+ε) as follows, where the complexity of an
envelope UX is defined as its number of vertices, edges,
and faces. For each boundary arc a ∈ X , we consider
a vertical wall Wa = a × R in 3D. Since X has O(n)
complexity, we have O(n) surfaces of the type Wa.

The upper envelope UW of the surfaces Σ1, . . . , Σn

together with the walls Wa for arcs a in the boundary of
X can be computed and described in O(n2+ε) time, for
any fixed ε > 0 [1]. However, since we have introduced
the vertical walls Wa, the domain of each patch of UW is
either fully contained in X or fully outside X . It follows
that the restriction UX of U to X can be constructed
in O(n2+ε) time.

It remains to find the lower point of UX . Observe
that this point does not necessarily have to be a vertex.
However, finding the lower point of UX can be done by
checking each piece of UX , that is, each vertex, edge,
and face. For a vertex and an edge in UX , the lower
point can be found in constant time, while for each face
in UX we can find the minimum in time proportional
to its complexity. Using that the complexity of UX is
O(n2+ε), we conclude the following.

Theorem 7 The MINMAX problem can be solved in
O(n2+ε) time, for any fixed ε > 0.

Using the same approach, the MAXMIN problem
can be solved by computing the lower envelope L of
Σ1, . . . , Σn, considering its restriction LX to a given set
X , and finding the highest point in LX .

Theorem 8 The MAXMIN problem can be solved in
O(n2+ε) time, for any fixed ε > 0.

4 MINMAX/MAXMIN criteria for optimal MAX-
COV solutions

Here we describe how to find the best location b within
L(k) according to the MINMAX criterion, i.e., we want
a smallest circle centered at b ∈ L(k) while containing
BRNN(b). Let U be the upper envelope of the surface
patches Σ1, . . . , Σn. We want to find the lower point of
U restricted to the locus L(k), for some value k. Let
Uk be the restriction of the upper envelope U to L(k).
We next argue that Uk has complexity O(n2+ε) and
can be constructed in O(n2+ε) time. For each circle Ri,
consider the cylinder Ci = Ri × R in R

3. The upper
envelope U ′ of the surfaces Σ1, . . . , Σn, C1, . . . , Cn has
complexity O(n2+ε) and can be constructed in O(n2+ε)
time [1]. Because we have included C1, . . . , Cn in the set
of surfaces, the domain of each patch of U ′ is contained
in a cell in the arrangement A. The restriction of Uk

to a cell of c ∈ L(k) is the same as the restriction of U ′

to the same cell. We conclude that the envelope Uk has
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complexity O(n2+ε), and we can find the lower point
in U ′ using O(n2+ε) time by checking each piece of Uk

independently.

Theorem 9 According to the MINMAX criterion, the
best location in the set of placements in a level set L(k)
can be computed in O(n2+ε) time, for any fixed ε > 0.

Clearly, the same result applies if we replace the MIN-
MAX criterion by the MAXMIN criterion.

5 Working with L1 and L∞-metrics

We consider now the L∞ metric. For the MAXCOV
criterion, the ideas described above directly apply, but
they yield better running times. Like before, let Ri

be the disk (square) with radius d∞(ri, b(ri)) centered
at point ri, and define the arrangement A induced by
{R1, . . . , Rn}. We have to compute the maximum depth
of A. Although A may have quadratic complexity, the
maximum depth in an arrangement of n rectangles can
be found in O(n log n) time. This corresponds to a max-
imum clique in the intersection graph of squares [8];
alternatively, we may use a sweep-line algorithm main-
taining a segment tree describing the depth of the line
in the arrangement. Since the same argument applies
to the L1 metric, this leads to the following result.

Theorem 10 In the L∞ and L1 metrics, we can com-
pute the value MAXCOV(S) and a witness placement
in O(n log n) worst-case running time.

Observe that the description of all the optimal place-
ments may take Ω(n2), since it may consist of the union
of many cells from A. Of course, the 3SUM-hardness
proof does not carry to the L∞ or L1 metric, and it does
not make sense to consider approximation algorithms.

For the MINMAX criterion, the same ideas as de-
scribed for the L2 metric apply. For each point ri, we
consider the square cylinders Cyli = Ri × R, and the
polyhedral cones Coni such that its section at z = t
corresponds a square centered at ri and side length 2t.
Notice that Σi is a surface consisting of 4 triangles, that
is, 4 piece-wise linear patches. Like before, we want
to compute the upper envelope of these linear patches,
which can be done in O(n2α(n)) time [6]. The rest of
the analysis carries out like before, and we obtain the
following improved bound.

Theorem 11 In the L∞ and L1 metrics, the MINMAX
problem can be solved in O(n2α(n)) time.
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