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Abstract

The pagenumber problem for ordered sets is known to
be NP-complete, even if the order of the elements on
the spine is fixed. In this paper, we investigate this
problem for some classes of ordered sets. We provide an
efficient algorithm for drawing bipartite interval orders
in the minimum number of pages needed. We also give
an upper bound for the pagenumber of general bipar-
tite ordered sets and the pagenumber of the complete
multipartite ordered sets with length four and five.

1 Introduction

A large number of relevant problems in different do-
mains can be formulated as graph layout problems (see
Diaz et al. [2] for a survey). A book embedding (or
stack layout) of a graph G consists of an embedding of
its nodes along the spine of a book and embeddings of
its edges on pages so that edges embedded on the same
page do not intersect. The pagenumber of G, page(G),
is the minimum number of pages needed, taken over
all permutations on the vertices of G. Applications of
stack layouts include sorting permutations, fault toler-
ant VLSI design, complexity theory, compact graph en-
codings, compact routing tables, and graph drawing.
Nowakowski and Parker [6] were the first to introduce
the pagenumber of an ordered set. It is the stacknumber
of an ordered set’s Hasse diagram viewed as a directed
graph. In a book embedding for an ordered set P , the
vertices of P are embedded on the spine of the book
to form a linear extension of P. Most of the known re-
sults relate to classes of ordered sets with a pagenumber
two, and even the question regarding a general charac-
terization of ordered sets with pagenumber two is still
open. Several questions on the pagenumber problem are
shown to be NP-complete: if the order of nodes on the
spine is fixed, whether an ordered set can be embedded
in 6-pages, computing the page number of a bipartite
order, etc. (see[5] for an extensive review). Perhaps
the only challenging class where a precise solution was
found is the class of series-parallel planar ordered sets:
Alzohairi and Rival [1] showed that the pagenumber of
any series-parallel planar ordered set is at most two.
Giacomo et al. [4] presented a better algorithm (linear
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time) to embed series-parallel planar ordered sets into
two pages. In this paper, we compute the page num-
ber in some restricted classes of ordered sets. We prove
that the pagenumber of a bipartite interval order P is
equal to the maximum pagenumber of a complete sub-
order of P . We use a technique that relies on easily
identifying complete suborders within a given bipartite
interval order. An algorithm for finding the pagenumber
of bipartite interval orders is deduced. The strategy we
used for bipartite interval order turns out to be help-
ful in finding an upper bound for the pagenumber of
bipartite ordered sets in general.

2 Definitions

Let P be an ordered set and let x be in P . The set
of successors (resp. predecessors) of x in P , denoted
Succ(x) (resp. Pred(x)), is the set of all elements y in
P such that x ≤ y (resp. x ≥ y). An interval rep-
resentation of an ordered set (P, <) is a function that
assigns to each element u in P an interval on the real
line Iu such that u < v if and only if each point of Iu is
less than every point in Iv . If an ordered set (P, <) has
an interval representation, then we call (P, <) an inter-
val order (see example Figure 1). Interval orders have
very nice characterizations which give more information
about the structure and make them more understand-
able [3]. An ordered set P is an interval order if and
only if P does not contain a 2⊗ 2 as induced suborder,
that is, a subset {u, v, x, y} of P with u < v and x < y

are the only comparabilities among these elements. In
any interval order P the following important condition
also holds: the sets of predecessors (as well as the sets
of successors) are linearly ordered with respect to inclu-
sion. That is, for all x, y ∈ P , either Pred(x) ⊆ Pred(y)
or Pred(x)⊇ Pred(y).

3 The Pagenumber of Bipartite Interval Orders

Theorem 1 The pagenumber of a bipartite interval or-
der is equal to the maximum pagenumber of complete
suborders of P .

First, note that for a bipartite ordered set P ,
page(P ′) ≤ page(P ) if P ′ is a suborder of P . In or-
der to prove Theorem 1, we need a sequence of lemmas.
Let P = (M, N) be a bipartite interval order with a set
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Figure 1: An interval order its interval representation.

M of minimal elements of size m and a set N of maxi-
mal elements of size n. Let M = (m1, m2, . . . , mm) be
the list of minimal elements of P arranged in a decreas-
ing order with respect to the inclusion relation of the
sets of successors, i.e. Succ(m1) ⊇ Succ(m2) ⊇ . . .⊇
Succ(mm). Let N = (n1, n2, . . . , nn) be the list of max-
imal elements of P arranged in decreasing order with
respect to the inclusion relation of the sets of predeces-
sors, i.e. Pred(n1) ⊇ Pred(n2) ⊇ . . .⊇ Pred(nn).

Lemma 2 Let P = (M, N) be a bipartite interval
order, and let P ′ = (M ′, N ′) be a complete sub-
order of P . Then there exists i and j such that
M ′ ⊆ {m1, m2, · · · , mi} and N ′ ⊆ {n1, n2, · · · , nj} and
({m1, m2, · · · , mi}, {n1, n2, · · · , nj}) is a complete bi-
partite suborder of P .

Proof. Let j be the maximum key such that nj ∈
N ∩ N ′ (j exists since N ′ ⊆ N). Since Pred(nj) ⊆
Pred(nk) for every k ≤ j then (M ′, {n1, n2, · · · , nj})
is a complete suborder of P . Likewise, let i be the
maximum key such that mi ∈ M ∩ M ′(i exists since
M ′ ⊆ M). Since Succ(mi) ⊆ Succ(mk) for every k ≤ i,
({m1, m2, · · · , mi}, {n1, n2, · · · , nj}) is a complete bi-
partite suborder of P . Moreover it is obvious that
M ′ ⊆ {m1, m2, · · · , mi} and N ′ ⊆ {n1, n2, · · · , nj} �

Lemma 2 shows that in order to find a complete bi-
partite suborder of P with the maximum pagenumber,
it is sufficient to look at those ones with the structure
({m1, m2, · · · , mi}, {n1, n2, · · · , nj}), for some i and j.
Henceforth, P (i, j) will be used to refer to these com-
plete bipartite suborders.

Lemma 3 Let P = (M, N) be a bipartite interval or-
dered set, and let P1 = P (i, j) be a complete suborder of
P with a maximal pagenumber.

If j > i then for every k, l > i, nk is non comparable
to ml in P .

If j < i then for every k, l > j, nk is non comparable
to ml in P .

Proof. Suppose that j > i, therefore page(P1) =
min{i, j} = i. Suppose that nk > ml in P

for some key k and l > i. Since Succ(ml) ⊆
Succ(mr) for every r ≤ l, Succ(mi+1) will contain
{n1, n2, · · · , nj} and therefore P2 = P (i + 1, j) =
({m1, m2, · · · , mi, mi+1}, {n1, n2, · · · , nj}) is a com-
plete suborder of P and where page(P2) = min {i +
1, j} = i + 1 > page(P1) [Since i < j]. This contra-
dicts the choice of P1. The same argument will apply if
j < i. �

Proof. [of Theorem 1] Consider a complete suborder
P ′ = P (i, j) of P with a maximum pagenumber. We
prove that the bipartite interval ordered set P can also
be embedded in page(P ′) which is equal to the minimum
of the two levels i.e. i, j. The optimal layout of P is
obtained using the following linear extension L of P :

mm < mm−1 < · · · < m1 < nn < nn−1 < · · · < n1

Without loss of generality, we may assume that i < j.
We will use the first page to draw all covering relations
of m1 and of n1. Clearly, we can fit all these covering
relations within the first page. This is possible because
the covering relation between m1 and n1 will leave an
empty hole that we could utilize to embed the relations
between n1 and the elements in M (see Figure 2 (a)).
We continue to draw the covering relations between m2

and n2 in the second page and so on.
Overall, we will be able to draw all of the left cover

relations of the elements mk and nk on the kth page
for k ≤ i. Lemma 3 guarantees that all the covering
relations of P will be drawn in one of the pages after i

iterations (see Figure 2(b)). �
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Figure 2: An illustration for Theorem 1.

Complexity of the Algorithm: the drawing al-
gorithm implied from Theorem 1 consists of two parts:
the preprocessing (sorting the list of minimal elements
of P in a decreasing order with respect to the inclusion
relation of the sets of successors and sorting the list of
maximal elements of P in decreasing order with respect
to the inclusion relation of the sets of predecessors) and
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drawing stage. It is easy to see that both stages of the
algorithm have a complexity of O(n2) where n is the
number of elements in P .
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Figure 3: A bipartite interval order.

In Figure 3, the largest complete suborder is P ′(5, 4)
which can can be embedded in four pages. Likewise, the
bipartite interval order can be embedded in four pages
with the following linear extension L : b < c < e < a <

d < n < m < l < g < f < k < j < i < h, as shown in
Figure 4.
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Figure 4: Four pages embedding of the order of Figure 3.

The result of Theorem 1 cannot be extended to the
case of n-partite interval orders. We do not see a gen-
eralization for the n-partite interval order and not even
for the tripartite case. For instance, Figure 5 illustrates
a tripartite interval order P which has page(P ) = 4 al-
though there are no complete tripartite suborders with
pagenumber larger than 3. P ′ is a complete tripartite
suborder obtained from P with a maximum pagenum-
ber.

4 An Upper Bound for the Pagenumber of Bipartite

Ordered Sets

The strategy we used in the last section turns out to be
helpful in finding an upper bound for the pagenumber
of a general bipartite ordered sets. Therefore, we can
utilize a similar strategy to assist us in finding an upper
bound for the pagenumber of bipartite ordered sets.
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Figure 5: Interval order P with the complete multipar-
tite suborder P ′ of P .

We define a zig-zag Z of length 2n in P as a partition
into disjoint subsets of M = M1, M2, · · · , Mn and N =
N1, N2, · · · , Nn such that

Succ(Mi) ⊆ Ni∪Ni+1 for 1 ≤ i < n and Succ(Mn) ⊆
Nn and

Pred(Ni) ⊆ Mi−1∪Mi for 1 < i ≤ n and Pred(N1) ⊆
M1.
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Figure 6: A zig-zag of length four.

Theorem 4 Let P = (M, N) be a bipartite ordered set.
Let Z = M1, M2, N1, N2, be a zig-zag of length 4 that
covers P . Then, the pagenumber of P is bounded by the
maximum value of |M1| and |N2|.

Proof. Let us enumerate all the elements of the dis-
joint sets of the zig-zag namely, M1, M2, N1 and N2

in random orders: M1 : m1,1 < m1,2 < · · · <

m1,m, M2 : m2,1 < m2,2 < · · · < m2,n, N1 : n1,1 <

n1,2 < · · · < n1,p, N2 : n2,1 < n2,2 < · · · < n2,q . Let
us assume L is a linear extension of P obtained by enu-
merating the elements of P using the following ranking
order:

m1,1 < m1,2 < · · · < m1,m

< m2,1 < m2,2 < · · · < m2,n

< n2,1 < n2,2 < · · · < n2,q

< n1,1 < n1,2 < · · · < n1,p

We can utilize the first page to draw all covering rela-
tions of m1,1 and n2,1 as follows. It is possible to ac-
commodate all these covering relations within the same
page (1st page) since area between m1,1 and n2,1 is not
used (we may have a covering relation between these two
vertices) and thus could be used to draw the relations
between n2,1 and the elements in M .

After k iterations such that k ≤max{|M1|, |N2|}, we
will be able to embed all of the remaining covering re-
lations of the elements m1,k and n2,k in the kth page.
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After max{|M1|, |N2|} iterations, all the covering rela-
tions of P will be drawn in one of the pages because
there are no covering relations between the elements of
N1 and the elements of M1.

�

Although we have been successful to find an upper
bound for the complete multipartite ordered sets of
length four and five, we cannot see an easy way to gener-
ate a recursive formula that can be generalized to com-
pute the pagenumber of complete multipartite ordered
set with length n.

5 Pagenumber of Complete Multipartite Ordered

Sets

In this last section, we give an approximation of the
pagenumber of complete multipartite ordered sets of
length four and five. It is not an easy task to find the pa-
genumber for even a special class of complete multipar-
tite ordered sets. Recall that page(P ) = min{|L1|, |L2|}
for complete bipartite ordered sets and page(P ) =
min{|L2|, |L1|+ |L3|} for tripartite ordered sets [7]. A
similar approach is used in both cases to obtain optimal
embedding. This approach finds a vertex cover C with
a minimum size and then uses a separate page to embed
all covering relations of a single element of C. We can
approximate the pagenumber of a complete multipartite
ordered set P by computing its minimal vertex cover.
The covering graph of P can be viewed as a bipartite
graph G. We can observe that every vertex cover of P

corresponds to a vertex cover in G. We will omit the
proofs of Theorem 5 and 6. It is based on the idea of
limiting the embeddings to the ones related to minimal
vertex coverings of the ordered set.

Theorem 5 Let P = (L1, L2, L3, L4) be a complete
multipartite ordered set of length 4. Then, the pa-
genumber of P is bounded by the minimum of {|L1| +
|L3|, |L2|+ |L4|, |L2|+ |L3| − 1}.

Theorem 6 Let P = (L1, L2, L3, L4, L5) be a complete
multipartite ordered set of length 5. Then the pagenum-
ber of P is bounded by the minimum of |L2|+ |L4| and
|L3|+ max(min(|L1|, |L2| − 1),min(|L4| − 1, |L5|)).

6 Conclusion

In this paper, we look at the problem of the pagenum-
ber of bipartite ordered sets. We give a polynomial algo-
rithm finding the exact pagenumber of bipartite interval
orders. We also give an upper bound for general bipar-
tite orders, and multipartite orders of length four and
five.

Our solution for bipartite interval orders does not
however extend to n-partites interval order, for which
the question remains open.
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