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Abstract

We consider the problem of balancing the load among m
service-providing facilities, while keeping the total cost
low. Let R be the underlying demand region, and let
p1, . . . , pm be m points representing m facilities. We
consider the following problem. Divide R into m sub-
regions R1, . . . , Rm, each of area area(R)/m, such that
region Ri is served by facility pi, and the average dis-
tance between a point q in R and the facility that serves
q is minimal. We present constant-factor approximation
algorithms for this problem.

1 Introduction

Given m facilities we would like to balance the load
among these facilities, while keeping the total cost low.
In other words, let R denote the region in the plane
that must be served by the facilities. We would like
to divide R into m subregions R1, . . . , Rm, each of area
area(R)/m, such that all requests initiated by clients in
Ri are served by the i-th facility, and the total cost is
minimal.

For example, if the facilities are fire stations. Then,
on the one hand, we would like the average distance
between a point q in R and the fire station that is re-
sponsible for q to be as small as possible, and, on the
other hand, we would like to balance the load among
the fire stations.

We thus consider the following problem. Let R denote
the underlying demand region, and let p1, . . . , pm be m
points representing m facilities. Put P = {p1, . . . , pm}.
One needs to divide R into m subregions R1, . . . , Rm,
each of area area(R)/m, such that region Ri is associ-
ated with point pi, and the total cost of the division is
minimal. Given a division, the cost associated with fa-
cility pi, µ(pi), is the average distance between pi and a
point in Ri, and the total cost of the division is

∑
i µ(pi).

Without the load-balancing requirement, one can
simply compute the Voronoi diagram of P (restricted to

∗Department of Computer Science, Ben-Gurion University of

the Negev, Beer-Sheva 84105, Israel, carmip@cs.bgu.ac.il. Par-

tially supported by grant no. 2000160 from the U.S.-Israel Bina-

tional Science Foundation, and by a Kreitman Foundation doc-

toral fellowship.
†Department of Computer Science, Ben-Gurion University of

the Negev, Beer-Sheva 84105, Israel, carmip@cs.bgu.ac.il. Par-

tially supported by grant no. 2000160 from the U.S.-Israel Bina-

tional Science Foundation.

R) and associate each facility with its Voronoi cell, in
order to obtain an optimal solution. However, with the
load-balancing requirement the problem becomes much
more difficult.

In this paper we describe an algorithm that, un-
der reasonable and natural assumptions on R and on
the subregions, divides R into m subregions (each of
area area(R)/m) and associates them with the facil-
ities in P . We call the division obtained grid-min-

sum, and prove that grid-min-sum is a (8 + 3
2

√
2π)-

approximation. That is, the total cost of grid-min-sum

is at most (8+ 3
2

√
2π) times the cost of an optimal divi-

sion. The running time of our algorithm is O(n3). We
also show how to reduce the running time to roughly
O(n2) without increasing the approximation factor too
much.

2 The Algorithm

Let us formulate the problem more precisely. We as-
sume that the number m of facilities is equal to l2, for
some integer l ≥ 2, and that each facility is represented
by a point pi in the plane. Put P = {p1, . . . , pm}. We
also assume (for convenience only) that the underlying
region R is a square. (This assumption is not necessary;
all subsequent results hold for any rectangle R that can
be divided into m squares of equal size. Thus the aspect
ratio of R can be as large as m.) We study the following
problem. Divide R into m regions R1, . . . , Rm, each of
area area(R)/m, such that region Ri is associated with
point pi, and the total cost is minimal. Where the cost
µ(pi) associated with facility pi is the average distance
between pi and a point in Ri, and the total cost of the
division is

∑
i µ(pi).

We describe a simple algorithm that divides R into
m subregions and associates them with the points in P .
We call the division obtained grid-min-sum. We then
prove that grid-min-sum is (8+ 3

2

√
2π)-approximation,

under the assumption that the subregions must be con-
vex.

The algorithm divides R into m = l2 squares of equal
size, and associates the squares with the points in P .
Let S denote the set of squares σ1 . . . σm. Let G =
(P ,S; E) be the complete bipartite graph with vertex
sets P and S. We associate weights with the edges in
E. The weight of the edge (p, σ) is the average distance
between p and the points in σ. The weight of an edge
can be computed by integration in O(1) time. We now
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associate the squares with the points by computing a
minimum-weight matching in G, i.e., a matching for
which the sum of the weights (of the m edges defining
the matching) is minimal. Using the algorithm of Kuhn
[4] this can be done in O(n3) time.

We next prove that the division that was obtained
(i.e., grid-min-sum) is a constant-factor approxima-
tion.

2.1 grid-min-sum is a constant-factor approxima-

tion

Let opt denote an optimal division, i.e., a minimum-
cost load-balancing partition of R into convex sub-
regions, where region Ri is associated with point pi,
i = 1, . . . , m. We use opt to obtain a new division,
grid, that is also based on the squares in S. We then
show that grid is a (8 + 3

2

√
2π)-approximation, immedi-

ately implying that grid-min-sum is also a (8+ 3
2

√
2π)-

approximation, since grid-min-sum is the best division
among those based on the squares in S.

Define a bipartite graph G = (S, R; E), where R =
{R1, . . . , Rm} is the set of regions of opt, and there is
an edge between σi ∈ S and Rj ∈ R if and only if
σi ∩ Rj 6= ∅. Hall’s matching theorem [5] gives a neces-
sary and sufficient condition for G to contain a perfect
matching. According to Hall’s matching theorem, G
contains a perfect matching if and only if for any sub-
set S′ of S we have |N(S′)| ≥ |S′|, where N(S′) is the
set of regions in R that are connected by an edge to
a square in S′. However, this condition trivially holds
in our case, since we need at least |S′| regions of R in
order to cover a region of area |S′|area(R)/m. We thus
associate the squares in S with the points in P to obtain
the division grid by computing any perfect matching in
G (if square σj was matched to region Ri, then σj is
associated with point pi).

zi

Riai

pi ≤
√

2

q

σj

∆(Ri) ≥ 2√
π

Figure 1: grid is a constant-factor approximation.

We now show that grid is a (8+ 3
2

√
2π)-approximation,

immediately implying that grid-min-sum is also a (8+
3
2

√
2π)-approximation, since grid-min-sum is the best

division among those based on the squares in S.

Let pi ∈ P and let σj ∈ S be the square assigned
to pi by grid; see Figure 1. Let q ∈ σj ∩ Ri, where
Ri is the region assigned to pi by opt. Assume w.l.o.g.
that area(σj) = area(Ri) = 1, then the diameter of
Ri, ∆(Ri), is at least 2/

√
π. Let zi be a point in the

plane for which the average distance to the points in Ri

is minimal. zi is the Fermat-Weber center of Ri. Since
Ri is convex, davg(zi, Ri) ≥ ∆(Ri)/7 (See [3]), where
davg(zi, Ri) is the average distance between zi and the
points in Ri, and also davg(zi, Ri) ≥ 2/(3

√
π). (The

right side of the latter inequality is equal to the average
distance between the center of a disc of radius 1/

√
π and

the points of the disc.) Let ai ∈ Ri be the closest point
to pi (if pi ∈ Ri, then ai = pi). Then the cost µ(pi) of pi

in opt is, on the one hand, at least davg(zi, Ri), and, on
the other hand, at least ||piai||. As to µ(pi) in grid we
have µ(pi) ≤ ||piai||+||aiq||+

√
2 ≤ ||piai||+∆(Ri)+

√
2.

Now, if ||piai|| ≥ davg(zi, Ri), then using the second
inequality for µ(pi) in opt (and noticing that in this case
∆(Ri) ≤ 7||piai||) we obtain that

µgrid(pi)

µopt(pi)
≤ ||piai|| + ∆(Ri) +

√
2

||piai||
≤ 8||piai|| +

√
2

||piai||
≤

≤ 8 +

√
2

davg(zi, Ri)
≤ 8 +

3

2

√
2π ,

and, if ||piai|| < davg(zi, Ri), then using the first in-
equality for µ(pi) in opt we obtain that

µgrid(pi)

µopt(pi)
≤ ||piai|| + ∆(Ri) +

√
2

davg(zi, Ri)
≤

≤ 8davg(zi, Ri) +
√

2

davg(zi, Ri)
≤ 8 +

3

2

√
2π .

We conclude that in both cases the ratio between µ(pi)
in grid and µ(pi) in opt is at most 8+ 3

2

√
2π, for any 1 ≤

i ≤ m, and therefore grid is a (8+ 3
2

√
2π)-approximation.

Finally, since the cost of grid-min-sum is at most the
cost of grid, we conclude that grid-min-sum is a (8 +
3
2

√
2π)-approximation.

Theorem 1 A division of R that is a (8 + 3
2

√
2π)-

approximation can be computed in O(n3) time.

2.2 Improving the running time

Consider the complete bipartite graph G = (P , S; E)
in which we compute a minimum weight matching to
obtain the division grid-min-sum. By modifying the
definition of the weight of an edge (p, σ) ∈ E, we can
both simplify the computation of the edge weights and
reduce the running time of our algorithm to O(n2+ε),
without increasing the approximation factor too much.
We define the weight of (p, σ) to be the distance between
p and the center of σ. Now, the graph G is actually
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the complete bipartite graph induced by two point sets
in the plane, and we can apply to it the algorithm of
Agarwal et al. [1] that computes a minimum weight
matching in such graphs in time O(n2+ε) using O(n1+ε)
space.

It remains to bound the approximation factor of the
division grid-min-sum’ that is obtained. We show
that the cost of grid-min-sum’ is at most the cost
of grid-min-sum plus m

√
2, and therefore grid-min-

sum’ is a (8+3
√

2π)-approximation (using the inequal-
ity µ(opt) ≥ 2m/(3

√
π)). Indeed, let M (resp., M ′) be

the matching defining grid-min-sum (resp., grid-min-

sum’). Also, for a point pi and a square σj , let qi
j ∈ σj

be the closest point to pi in σj , and let oj be the center
of σj . Then

m
√

2 +
∑

(pi,σj)∈M

davg(pi, σj) ≥

≥ m
√

2

2
+

∑

(pi,σj)∈M

(||piq
i
j || +

√
2

2
) ≥

≥ m
√

2

2
+

∑

(pi,σj)∈M

||pioj || ≥
m
√

2

2
+

∑

(pi,σj)∈M ′

||pioj || =

=
∑

(pi,σj)∈M ′

(||pioj || +
√

2

2
) .

But the first expression in the above sequence of in-
equalities is the cost of grid-min-sum plus m

√
2, and

the last expression is greater or equal than the cost of
grid-min-sum’.

Theorem 2 A division of R that is a (8 + 3
√

2π)-
approximation can be computed in O(n2+ε) time.

Proof. Using the inequality µ(opt) ≥ 2m/(3
√

π),

µ(grid-min-sum′)

µ(opt)
≤ µ(grid-min-sum) + m

√
2

µ(opt)
≤

≤ (8 +
3

2

√
2π) +

m
√

2

2m/(3
√

π)
= 8 + 3

√
2π .

�

3 Concluding Remarks

Remark 1 In [2] Section 5, a generalization of the fol-
lowing related problem was studied. In this problem
the cost associated with a facility pi is the maximum
distance between pi and a point in its subregion, and
the total cost of the division is the maximum over the
costs of the facilities. There too a constant factor ap-
proximation algorithm is presented.
Remark 2 Very recently we managed to generalize the
results of this paper to regions R that are convex and

fat (rather than rectangular). This required an efficient
algorithm for partitioning such a region R into m convex
and fat subregions, each of area area(R)/m.
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