# Minimum-Cost Load-Balancing Partitions

Paz Carmi\*

Matthew J. Katz<sup>†</sup>

## Abstract

We consider the problem of balancing the load among m service-providing facilities, while keeping the total cost low. Let R be the underlying demand region, and let  $p_1, \ldots, p_m$  be m points representing m facilities. We consider the following problem. Divide R into m subregions  $R_1, \ldots, R_m$ , each of area area(R)/m, such that region  $R_i$  is served by facility  $p_i$ , and the average distance between a point q in R and the facility that serves q is minimal. We present constant-factor approximation algorithms for this problem.

#### 1 Introduction

Given m facilities we would like to balance the load among these facilities, while keeping the total cost low. In other words, let R denote the region in the plane that must be served by the facilities. We would like to divide R into m subregions  $R_1, \ldots, R_m$ , each of area area(R)/m, such that all requests initiated by clients in  $R_i$  are served by the *i*-th facility, and the total cost is minimal.

For example, if the facilities are fire stations. Then, on the one hand, we would like the average distance between a point q in R and the fire station that is responsible for q to be as small as possible, and, on the other hand, we would like to balance the load among the fire stations.

We thus consider the following problem. Let R denote the underlying demand region, and let  $p_1, \ldots, p_m$  be mpoints representing m facilities. Put  $\mathcal{P} = \{p_1, \ldots, p_m\}$ . One needs to divide R into m subregions  $R_1, \ldots, R_m$ , each of area area(R)/m, such that region  $R_i$  is associated with point  $p_i$ , and the total cost of the division is minimal. Given a division, the cost associated with facility  $p_i, \mu(p_i)$ , is the average distance between  $p_i$  and a point in  $R_i$ , and the total cost of the division is  $\sum_i \mu(p_i)$ .

Without the load-balancing requirement, one can simply compute the Voronoi diagram of  $\mathcal{P}$  (restricted to

R) and associate each facility with its Voronoi cell, in order to obtain an optimal solution. However, with the load-balancing requirement the problem becomes much more difficult.

In this paper we describe an algorithm that, under reasonable and natural assumptions on R and on the subregions, divides R into m subregions (each of area area(R)/m) and associates them with the facilities in  $\mathcal{P}$ . We call the division obtained GRID-MIN-SUM, and prove that GRID-MIN-SUM is a  $(8 + \frac{3}{2}\sqrt{2\pi})$ approximation. That is, the total cost of GRID-MIN-SUM is at most  $(8 + \frac{3}{2}\sqrt{2\pi})$  times the cost of an optimal division. The running time of our algorithm is  $O(n^3)$ . We also show how to reduce the running time to roughly  $O(n^2)$  without increasing the approximation factor too much.

## 2 The Algorithm

Let us formulate the problem more precisely. We assume that the number m of facilities is equal to  $l^2$ , for some integer  $l \ge 2$ , and that each facility is represented by a point  $p_i$  in the plane. Put  $\mathcal{P} = \{p_1, \ldots, p_m\}$ . We also assume (for convenience only) that the underlying region R is a square. (This assumption is not necessary; all subsequent results hold for any rectangle R that can be divided into m squares of equal size. Thus the aspect ratio of R can be as large as m.) We study the following problem. Divide R into m regions  $R_1, \ldots, R_m$ , each of area area(R)/m, such that region  $R_i$  is associated with point  $p_i$ , and the total cost is minimal. Where the cost  $\mu(p_i)$  associated with facility  $p_i$  is the average distance between  $p_i$  and a point in  $R_i$ , and the total cost of the division is  $\sum_i \mu(p_i)$ .

We describe a simple algorithm that divides R into m subregions and associates them with the points in  $\mathcal{P}$ . We call the division obtained GRID-MIN-SUM. We then prove that GRID-MIN-SUM is  $(8+\frac{3}{2}\sqrt{2\pi})$ -approximation, under the assumption that the subregions must be convex.

The algorithm divides R into  $m = l^2$  squares of equal size, and associates the squares with the points in  $\mathcal{P}$ . Let  $\mathcal{S}$  denote the set of squares  $\sigma_1 \ldots \sigma_m$ . Let  $G = (\mathcal{P}, \mathcal{S}; E)$  be the complete bipartite graph with vertex sets  $\mathcal{P}$  and  $\mathcal{S}$ . We associate weights with the edges in E. The weight of the edge  $(p, \sigma)$  is the average distance between p and the points in  $\sigma$ . The weight of an edge can be computed by integration in O(1) time. We now

<sup>\*</sup>Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, carmip@cs.bgu.ac.il. Partially supported by grant no. 2000160 from the U.S.-Israel Binational Science Foundation, and by a Kreitman Foundation doctoral fellowship.

<sup>&</sup>lt;sup>†</sup>Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, carmip@cs.bgu.ac.il. Partially supported by grant no. 2000160 from the U.S.-Israel Binational Science Foundation.

associate the squares with the points by computing a minimum-weight matching in G, i.e., a matching for which the sum of the weights (of the *m* edges defining the matching) is minimal. Using the algorithm of Kuhn [4] this can be done in  $O(n^3)$  time.

We next prove that the division that was obtained (i.e., GRID-MIN-SUM) is a constant-factor approximation.

# 2.1 GRID-MIN-SUM is a constant-factor approximation

Let **opt** denote an optimal division, i.e., a minimumcost load-balancing partition of R into convex subregions, where region  $R_i$  is associated with point  $p_i$ ,  $i = 1, \ldots, m$ . We use **opt** to obtain a new division, grid, that is also based on the squares in S. We then show that grid is a  $(8 + \frac{3}{2}\sqrt{2\pi})$ -approximation, immediately implying that GRID-MIN-SUM is also a  $(8 + \frac{3}{2}\sqrt{2\pi})$ approximation, since GRID-MIN-SUM is the best division among those based on the squares in S.

Define a bipartite graph  $G = (\mathcal{S}, R; E)$ , where  $\mathcal{R} =$  $\{R_1,\ldots,R_m\}$  is the set of regions of opt, and there is an edge between  $\sigma_i \in S$  and  $R_i \in \mathcal{R}$  if and only if  $\sigma_i \cap R_i \neq \emptyset$ . Hall's matching theorem [5] gives a necessary and sufficient condition for G to contain a perfect matching. According to Hall's matching theorem, Gcontains a perfect matching if and only if for any subset  $\mathcal{S}'$  of  $\mathcal{S}$  we have  $|N(\mathcal{S}')| \geq |\mathcal{S}'|$ , where  $N(\mathcal{S}')$  is the set of regions in  $\mathcal{R}$  that are connected by an edge to a square in  $\mathcal{S}'$ . However, this condition trivially holds in our case, since we need at least  $|\mathcal{S}'|$  regions of  $\mathcal{R}$  in order to cover a region of area  $|\mathcal{S}'|area(R)/m$ . We thus associate the squares in  $\mathcal{S}$  with the points in  $\mathcal{P}$  to obtain the division grid by computing any perfect matching in G (if square  $\sigma_i$  was matched to region  $R_i$ , then  $\sigma_i$  is associated with point  $p_i$ ).



Figure 1: grid is a constant-factor approximation.

We now show that grid is a  $(8+\frac{3}{2}\sqrt{2\pi})$ -approximation, immediately implying that GRID-MIN-SUM is also a  $(8+\frac{3}{2}\sqrt{2\pi})$ -approximation, since GRID-MIN-SUM is the best division among those based on the squares in S.

Let  $p_i \in \mathcal{P}$  and let  $\sigma_j \in \mathcal{S}$  be the square assigned to  $p_i$  by grid; see Figure 1. Let  $q \in \sigma_i \cap R_i$ , where  $R_i$  is the region assigned to  $p_i$  by opt. Assume w.l.o.g. that  $area(\sigma_i) = area(R_i) = 1$ , then the diameter of  $R_i, \Delta(R_i)$ , is at least  $2/\sqrt{\pi}$ . Let  $z_i$  be a point in the plane for which the average distance to the points in  $R_i$ is minimal.  $z_i$  is the Fermat-Weber center of  $R_i$ . Since  $R_i$  is convex,  $d_{avg}(z_i, R_i) \geq \Delta(R_i)/7$  (See [3]), where  $d_{avg}(z_i, R_i)$  is the average distance between  $z_i$  and the points in  $R_i$ , and also  $d_{avg}(z_i, R_i) \geq 2/(3\sqrt{\pi})$ . (The right side of the latter inequality is equal to the average distance between the center of a disc of radius  $1/\sqrt{\pi}$  and the points of the disc.) Let  $a_i \in R_i$  be the closest point to  $p_i$  (if  $p_i \in R_i$ , then  $a_i = p_i$ ). Then the cost  $\mu(p_i)$  of  $p_i$ in opt is, on the one hand, at least  $d_{avg}(z_i, R_i)$ , and, on the other hand, at least  $||p_i a_i||$ . As to  $\mu(p_i)$  in grid we have  $\mu(p_i) \le ||p_i a_i|| + ||a_i q|| + \sqrt{2} \le ||p_i a_i|| + \Delta(R_i) + \sqrt{2}.$ 

Now, if  $||p_i a_i|| \ge d_{avg}(z_i, R_i)$ , then using the second inequality for  $\mu(p_i)$  in opt (and noticing that in this case  $\Delta(R_i) \le 7||p_i a_i||$ ) we obtain that

$$\begin{split} \frac{\mu_{\mathsf{grid}}(p_i)}{\mu_{\mathsf{opt}}(p_i)} &\leq \frac{||p_i a_i|| + \Delta(R_i) + \sqrt{2}}{||p_i a_i||} \leq \frac{8||p_i a_i|| + \sqrt{2}}{||p_i a_i||} \leq \\ &\leq 8 + \frac{\sqrt{2}}{d_{avg}(z_i, R_i)} \leq 8 + \frac{3}{2}\sqrt{2\pi} \ , \end{split}$$

and, if  $||p_i a_i|| < d_{avg}(z_i, R_i)$ , then using the first inequality for  $\mu(p_i)$  in **opt** we obtain that

$$\begin{split} & \frac{\mu_{\mathsf{grid}}(p_i)}{\mu_{\mathsf{opt}}(p_i)} \leq \frac{||p_i a_i|| + \Delta(R_i) + \sqrt{2}}{d_{avg}(z_i, R_i)} \leq \\ & \leq \frac{8d_{avg}(z_i, R_i) + \sqrt{2}}{d_{avg}(z_i, R_i)} \leq 8 + \frac{3}{2}\sqrt{2\pi} \;. \end{split}$$

We conclude that in both cases the ratio between  $\mu(p_i)$ in grid and  $\mu(p_i)$  in opt is at most  $8 + \frac{3}{2}\sqrt{2\pi}$ , for any  $1 \leq i \leq m$ , and therefore grid is a  $(8+\frac{3}{2}\sqrt{2\pi})$ -approximation. Finally, since the cost of GRID-MIN-SUM is at most the cost of grid, we conclude that GRID-MIN-SUM is a  $(8 + \frac{3}{2}\sqrt{2\pi})$ -approximation.

**Theorem 1** A division of R that is a  $(8 + \frac{3}{2}\sqrt{2\pi})$ -approximation can be computed in  $O(n^3)$  time.

# 2.2 Improving the running time

Consider the complete bipartite graph  $G = (\mathcal{P}, S; E)$ in which we compute a minimum weight matching to obtain the division GRID-MIN-SUM. By modifying the definition of the weight of an edge  $(p, \sigma) \in E$ , we can both simplify the computation of the edge weights and reduce the running time of our algorithm to  $O(n^{2+\epsilon})$ , without increasing the approximation factor too much. We define the weight of  $(p, \sigma)$  to be the distance between p and the center of  $\sigma$ . Now, the graph G is actually the complete bipartite graph induced by two point sets in the plane, and we can apply to it the algorithm of Agarwal et al. [1] that computes a minimum weight matching in such graphs in time  $O(n^{2+\epsilon})$  using  $O(n^{1+\epsilon})$ space.

It remains to bound the approximation factor of the division GRID-MIN-SUM' that is obtained. We show that the cost of GRID-MIN-SUM' is at most the cost of GRID-MIN-SUM plus  $m\sqrt{2}$ , and therefore GRID-MIN-SUM' is a  $(8+3\sqrt{2\pi})$ -approximation (using the inequality  $\mu(\text{opt}) \geq 2m/(3\sqrt{\pi})$ ). Indeed, let M (resp., M') be the matching defining GRID-MIN-SUM (resp., GRID-MIN-SUM'). Also, for a point  $p_i$  and a square  $\sigma_j$ , let  $q_j^i \in \sigma_j$  be the closest point to  $p_i$  in  $\sigma_j$ , and let  $o_j$  be the center of  $\sigma_j$ . Then

$$\begin{split} m\sqrt{2} + \sum_{(p_i,\sigma_j)\in M} d_{avg}(p_i,\sigma_j) \geq \\ \geq \frac{m\sqrt{2}}{2} + \sum_{(p_i,\sigma_j)\in M} (||p_i q_j^i|| + \frac{\sqrt{2}}{2}) \geq \\ \geq \frac{m\sqrt{2}}{2} + \sum_{(p_i,\sigma_j)\in M} ||p_i o_j|| \geq \frac{m\sqrt{2}}{2} + \sum_{(p_i,\sigma_j)\in M'} ||p_i o_j|| = \\ = \sum_{(p_i,\sigma_j)\in M'} (||p_i o_j|| + \frac{\sqrt{2}}{2}) \;. \end{split}$$

But the first expression in the above sequence of inequalities is the cost of GRID-MIN-SUM plus  $m\sqrt{2}$ , and the last expression is greater or equal than the cost of GRID-MIN-SUM'.

**Theorem 2** A division of R that is a  $(8 + 3\sqrt{2\pi})$ approximation can be computed in  $O(n^{2+\epsilon})$  time.

**Proof.** Using the inequality  $\mu(\mathsf{opt}) \geq 2m/(3\sqrt{\pi})$ ,

$$\begin{aligned} \frac{\mu(\text{grid-min-sum}')}{\mu(\text{opt})} &\leq \frac{\mu(\text{grid-min-sum}) + m\sqrt{2}}{\mu(\text{opt})} \leq \\ &\leq (8 + \frac{3}{2}\sqrt{2\pi}) + \frac{m\sqrt{2}}{2m/(3\sqrt{\pi})} = 8 + 3\sqrt{2\pi} \;. \end{aligned}$$

### 3 Concluding Remarks

**Remark 1** In [2] Section 5, a generalization of the following related problem was studied. In this problem the cost associated with a facility  $p_i$  is the maximum distance between  $p_i$  and a point in its subregion, and the total cost of the division is the maximum over the costs of the facilities. There too a constant factor approximation algorithm is presented.

**Remark 2** Very recently we managed to generalize the results of this paper to regions R that are convex and

fat (rather than rectangular). This required an efficient algorithm for partitioning such a region R into m convex and fat subregions, each of area area(R)/m.

#### References

- P. K. Agarwal, A. Efrat and M. Sharir. Vertical decomposition of shallow levels in 3-dimensional arrangements and its applications. *SIAM Journal on Computing*, 29(3) (1999), 912–953.
- [2] P. Carmi, S. Dolev, S. Har-Peled, M. J. Katz and M. Segal. Geographic quorum system approximations. *Al-gorithmica*, 41(4) (2005), 233–244.
- [3] P. Carmi, S. Har-Peled and M. J. Katz, On the Fermat-Weber center of a convex object. *Comput. Geom. The*ory Appl., to appear.
- [4] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2 (1955), 83–97.
- [5] D. B. West. *Introduction to Graph Theory*. Second edition, Prentice Hall, 2001.