
Solving online feasibility problem in constant amortized time per update

Lilian Buzer∗†

Abstract

We present a deterministic algorithm for solving the two
and three-dimensional online feasibility problem. Inser-
tion of a new constraint is processed in constant amor-
tized time. Our method is adapted from the offline
linear deterministic Megiddo algorithm for linear pro-
gramming. As in his prune and search technique, our
method and its time bound extend to higher dimensions
but involve the same large constant. Our online version
that processes a feasibility problem achieves an optimal
time bound relative to previous methods [2, 6, 8, 9]. As
an application, it is well suited for the problem of digital
object recognition.

1 Introduction

Historically, working in the field of computational geom-
etry, Megiddo gave the first deterministic algorithm for
LP whose running time is linear in the number of con-
straints when the dimension is fixed [8, 9]. For dimen-

sion d, the time complexity of his method in O(22d

.n)
was next improved by Clarkson [3] and Dyer [4] to

O(3d2

n). Eventually, Dyer and Frieze [5] proposed an
approach that yields an dO(d)n time algorithm.

In recent years, no progress has been made on this
front. Nevertheless new developments occurred in ran-
domized and parallel algorithms with several simpler
and more practical methods [7, 10]. A comprehensive
survey of this field can be found in [1].

In the sequel, we work in a d-dimensional Euclidian
space. A set of n given inequalities define a convex poly-
tope S ⊂ R

d of feasible solutions. The feasibility prob-

lem consists in determining whether S is empty or not.
When we specify a linear objective function f(x) = c ·x
and look for a point x∗ ∈ S where this function reaches
its minimum, we solve a linear programming problem.

2 Motivation

When we process digital images, we often obtain a set
of disconnected pixels corresponding to the contour of
a shape. Most of the time, we approximate the given
pixels by Euclidian geometric primitives that retain the

∗A2SI Laboratory, ESIEE, 2 bd Blaise Pascal, Cité Descartes,

BP 99, 93162 Noisy-Le-Grand Cedex, France, buzerl@esiee.fr
†Unité Mixte CNRS-UMLV-ESIEE, UMR 8049

global shape of the pixels by minimizing an approxi-
mation error. But, using digital primitives we can build
an exact approximation whose drawing on the image ex-
actly matches the given pixels. At the beginning of such
a covering process, no pixel traversal order is generally
defined. A strategy dynamically decides which pixel
will be inserted into the object being recognized. For
such greedy recognition algorithms, our method offers
an interesting technique to efficiently recognize digital
objects with two or three intrinsic parameters. For ex-
ample, determining whether a digital segment covers a
set of points is equivalent to a system of two-dimensional
linear constraints. We only want to know if a valid seg-
ment exists, thus we are faced with a feasibility problem.

coveringline segment
Euclidian exact

some pixels
drawing misses

digital line
segment

Figure 1: An example of exact approximation

3 Offline Megiddo algorithm for linear programming

Without loss of generality, we rotate the coordinate sys-
tem in such a way that the objective function is equal
to f(x) = xd (note that this transformation is always
possible). For presentation convenience and wlog, let
us suppose that x∗ is a unique point and that we only
have constraints that select the upper part of the space
relative to the xd-axis. Therefore, we have:

Minimize xd so that xd ≥ Σd−1
j=1aij .xj + bi, 1 ≤ i ≤ n

(1)
Complexity. This technique eliminates constraints
that are not tight at x∗. At each iteration, a con-
stant fraction αd of the constraints is eliminated in
O(n) time. The runtime T (n) of the algorithm ver-
ifies T (n) = O(n) + T (αd.n) and this implies that
T (n) = O(n).

1



Deletion criterion. Under the previous assumption
(1), if we take two constraints xd ≥ Σd−1

k=1aik.xk + bi and

xd ≥ Σd−1
k=1ajk.xk + bj , then the equation Σd−1

k=1aik.xk +

bi = Σd−1
k=1ajk.xk + bj describes a hyperplane which di-

vides the space into two domains of domination. Thus,
if we could tell on which side of this hyperplane the op-
timal solution lies, we could then drop one of the two
constraints. Such a hyperplane is called a separating

line (SL) in the two-dimensional case and a separating

plane (SP) in the three-dimensional space.

3.1 The two-dimensional case

We hereafter describe the inner loop of Megiddo
two-dimensional algorithm (see Fig. 2):
1- Coupling: we couple constraints and create SLs.
2- Choosing a test line: as the SLs are vertical, we
can class them as their abscissa. We compute in linear
time a median γ for these values and choose the line
x1 = γ as our test line.
3- Testing: we intersect in linear time all the con-
straints with the test line and obtain a point P that
lies on the border of S. Moreover, we know the left
and right slopes around P . When no decreasing slopes
exists, P is the minimum and the problem is solved.
Otherwise, one property of the convex space of feasible
solutions is that only one decreasing slope may exist.
Thus, this decreasing slope indicates on which side of
the test line the optimum lies.
4- Pruning: the way we have defined the test line
allows to immediately deduce the optimum location
relative to one half of the SL. We then apply the
deletion criterion on the associated couples and reject
one quarter of the constraints. Thus, we have α2 = 3

4 .

Test line

constraint
Deleted

2. Selection of a test line

Separating line

1. Creating SL after coupling

4. Pruning3. Testing

γ

Px∗

S

Figure 2: Steps of Megiddo two-dimensional algorithm

3.2 The three-dimensional case

In the following, we explain the main ideas used to ex-
tend the previous method to the three-dimensional case.

Point location: suppose we have two planar lines
L1 and L2 of opposite slopes. Suppose we know the po-
sition of a point relative to the vertical and horizontal
lines passing trough the intersection of L1 and L2. Then
we can locate this point relative to one of the two lines
L1 and L2 (see Fig. 4).
A two-dimensional search problem. By definition,
the separating planes (SPs) are vertical. We can project
them onto the plane (x1, x2) and represent them by a
set of lines L. Now, our problem consists in a two-
dimensional search problem where we want to locate
the projection of x∗ relative to some lines of L. We
compute in linear time the median of the slopes of the
lines in L. For presentation convenience, we rotate the
plane (x1, x2) in order to make the x1-axis correspond
to this median. Thus, one half of the lines have a posi-
tive slope and the other half have a negative slope. We
obtain a partition of L into two subsets L− and L+ of
the same size. We couple each line of L− to a line of
L+. Let us consider the vertical lines (VLs) that pass
through the intersections of these couples. We compute
a median of these VLs and test it. We then know the
location of x∗ relative to one half of the V Ls. We now
turn to the horizontal lines (HLs) that pass through the
intersections of the couples of lines for which the posi-
tion of x∗ is known relative to the VLs. We compute
a median line for the HLs and test it. Thus, we obtain
the information relative to one half of the HLs and so
we know the location of x∗ relative to one quarter of the
couples. According to the point location technique (see
Fig. 4), we locate x∗ relative to one eight of the SPs
and can delete α3 = 1

16 of the constraints. These steps
are shown in Fig. 5.

Testing. We now explain how we find the location
of x∗ relative to a test line l during the search problem.
Let us consider the SP P associated to l (see Fig. 3). We
first solve our LP problem restricted to this plane and
obtain a minimum called m∗. As in the two-dimensional
case, we know that if a better solution exists, it can only
lie on one side of P . We restrict our attention to the
constraints C that pass through m∗. Let P1 and P2

denote two planes that are parallel to P and that lie on
each side of P . We solve two LP problems restricted to
P1 and P2 under the set of constraints C. If none of
the two optima is better than m∗, we have x∗ = m∗.
Otherwise, the lower optimum indicates on which side
of P x∗ is located.

4 The online feasibility problem

Lemma 1 When no feasible solutions lie on the tested

hyperplanes, we can prune the constraints and obtain an

identical set of feasible solutions by adding a constant

number of new constraints.

Proof. No feasible solutions lie on the tested hyper-

2



P1

P2

P

m
∗

m
∗

1
< m

∗

m
∗

2

Figure 3: Testing a plane

I

L2L1

Figure 4: Point location

1. Coupling constraints and creating SP

3. Testing the horizontal median line 4. Optimum located relative to one SP

2. Testing the vertical median line

x1

x2

x1

x1

x2

x2

x3 = x
d

x2

x1

Figure 5: Solving the two-dimensional search problem

planes. Thus, the separating hyperplanes, from where
we determine the possible location of the set S of feasible
solutions, contain no feasible solutions as well. There-
fore, the constraints to be pruned support no face of
S and so their deletion have no influence on it. For
each tested hyperplane, we must insert one new con-
straint that selects the half-space containing S in order
to maintain valid the system of inequalities. �

The frozen phase. We temporally freeze the oper-
ation sequence of the third step (testing) of Megiddo
algorithm as soon as a feasible solution is found. More
precisely, when we enter this modified step, the con-
straints C of the problem have been coupled and the
first test hyperplane is chosen. Let CF denote the con-
straints that have been inserted since the beginning of
the frozen phase. Solving the feasibility problem re-
duced to this test hyperplane is done by recursively call-
ing a (d − 1)-dimensional online algorithm. As soon as
a feasible solution is found in the (d − 1)-dimensional
problem, the current problem is solved, the program
stops and waits for a new constraint. When a new con-
straint is given, it is not coupled but directly inserted
in the (d − 1)-dimensional problem in order to obtain
a new feasible solution. When the (d − 1)-dimensional
problem finds no more feasible solutions, we determine
the possible location of the current space of solutions

relative to the constraints C and CF . We then com-
pute the next test hyperplane relative to the coupled
constraints C only. We proceed in the same way for the
following test hyperplanes.

Leaving the frozen phase. All the test hyperplanes
have been processed and thus no feasible solutions lie
on them. Therefore, we enter the pruning phase. The
constraints to be suppressed in C verify Lemma 1 and
so they are inactive. The constraints CF are inserted
into the pruned constraints. To finish the process, we
add one constraint for each tested hyperplane.

Test line contains feasible solutions
2. Inserting a new constraint1. Feasible points on the test line

Entering the frozen phase

Test line

No more feasible solutions
4. Leaving the frozen phase

Pruning the former coupled constraints

Suppressed

3. Inserting a new constraint

 constraints

Figure 6: The frozen phase of the incremental method

4.1 The two-dimensional case

We present the frozen phase in the two dimensional case
(see Fig. 6). We intersect all the current constraints
C with the test line. If we obtain a segment of feasible
points, we enter the frozen phase. We intersect each new
constraint with the current segment of feasible solutions.
We continue until no more solutions lie on the test line
and then we leave the frozen phase.

4.2 The three-dimensional case

To test a plane, we use our two-dimensional online
method. When we test the first plane, we insert C1

constraints until no more feasible solutions lie on it. We
then determine the location of the current space of so-
lutions S1 relative to the constraints C and C1. Thus
we deduce the second test hyperplane and launch an-
other two-dimensional problem. After inserting C2 con-
straints, no feasible solutions are present on this test
plane. We test it relative to the constraints C, C1 and
C2. We then know the location of the current set of

3



feasible solutions S2 ⊂ S1. We prune constraints in C
and obtain a new set of constraints C′. The current set
of the problem constraints is now given by C′∪C1∪C2.

4.3 Complexity of the online algorithm

The proof is by induction on the dimension d of the
space. Let us first consider the two-dimensional case.
Let (ri)1≤i≤k denote the number of constraints remain-
ing in the problem when we enter the ith frozen phase
and let (ai)1≤i≤k denote the number of constraints
added during this phase. Notice that ai may be zero.
To maintain the system of inequalities, we only insert
one constraint relative to the test line. When ri ≥ 4,
constraints are pruned and β · ri constraints remain in
the problem. Thus we have ri+1 ≤ β · ri + ai + 1. Oth-
erwise, when ri < 4 we have: ri+1 ≤ 4 + ai + 1. In any
case, this inequality holds:

ri+1 ≤
5

1 − β
+

i∑

u=1

βi−u
· au (2)

Coupling, computing one median and cutting by one
test line can be done in O(ri) time. During the frozen
phase, we intersect each new constraint with the line
segment in O(1). Let Ti denote the runtime of our al-
gorithm at the end of the ith frozen phase. Ti verifies:

Ti = O(ri)+ai ·O(1)+Ti−1 =
i∑

u=1

[O(ru)+O(au)] (3)

Then combining (2) and (3):

Tk ≤ O(

k∑

i=1

ai) + O(
k · 5

1 − β
) +

k∑

i=1

i∑

u=1

βi−u
· au (4)

Let n = Σk
i=1ai denote the total number of entered con-

straints. Note that k ≤ n. We can thus conclude that:

Tk ≤ O(n)+

k∑

u=1

k−u+1∑

i=1

βi−u
·au ≤ O(n)+

k∑

u=1

au

1 − β
= O(n)

(5)
In the d-dimensional case [9], the recurrence equation of
Megiddo algorithm satisfies:

LPd(n) = 3.Ad.LPd−1(n) + LPd(βd.n) + O(n.d)

With our version, we have to perform Ad frozen phases
before pruning at each iteration. Let al

i denote the num-
ber of inserted constraints in the lth frozen phase of the
ith iteration. With ai =

∑l
t=1 at

i, we obtain:

Td(ri+1) = 3.
∑Ad

l=1 .Td−1(ri +
∑l

t=1 at
i) +

Td(βd.ri + ai) + O((ri + ai).d)

Let K denote 1+1/(1−βd). Notice that our recurrence
equation is equivalent to the one of Megiddo algorithm:

Td(n) ≤ 3.Ad.Td−1(K.n) + Td(K.βd.n) + O(n.d)

5 Conclusion

We have presented an approach that transforms the de-
terministic offline linear Megiddo algorithm for linear
programming into a deterministic online and linear algo-
rithm that can solve a feasibility problem. Nevertheless,
as Megiddo algorithm, this version suffers from an im-
portant linearity coefficient when the dimension grows.
However, for the two and three-dimensional cases, this
technique provides an efficient online method for the
feasibility problem. Moreover the complexity of our al-
gorithm being optimal in the number of constraints, our
method will lead to optimal bounds for several recogni-
tion algorithms.

References

[1] Pankaj K. Agarwal and Micha Sharir. Efficient
algorithms for geometric optimization. In ACM

Comput. Surv., pp:412-458, 30, 1998.

[2] T.M. Chan. Deterministic Algorithms for 2-d Con-
vex Programming and 3-d Online Linear Program-
ming. In J. Algorithms, pp:147-166, 27(1), 1998.

[3] K.L. Clarkson. Linear Programming in O(n.23.d2

)
time. In Inform. Process. Lett., pp:21-24, 22, 1986.

[4] M. E. Dyer. On a multidimensional search tech-
nique and its application to the Euclidian one-
centre problem. In SIAM J. Comput. pp:725-738,
15, 1986.

[5] M. E. Dyer and A. M. Frieze. A randomized algo-
rithm for fixed-dimension linear programming. In
Math. Program., pp:203-212, 44, 1989.

[6] D. Eppstein. Dynamic Three-Dimensional Linear
Programming. In ORSA J. Computing, pp:360-
368, 4, 1992.

[7] K.L. Clarkson. A Las Vegas algorithm for linear
programming when the dimension is small. In Proc.

29th Annu. IEEE Sympos. Found. Comput. Sci.,
pp:452-456, 1998.

[8] N. Megiddo. Linear-time algorithms for linear pro-
gramming in R

3 and related problems. In SIAM J.

Comput., pp:759-776, 12, 1983.

[9] N. Megiddo. Linear programming in linear time
when the dimension is fixed. Journal of the ACM,
pp:114-127, 31, 1984.

[10] R. Seidel. Small-Dimensional Linear Programming
and Convex Hulls Made Easy. In Discrete and

Computational Geometry, pp:423-434, 6, 1991.

4


