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Abstract

A design of a class of linkages is presented which are less
complex than those suggested by Kapovich and Mill-
son in the con�guration of conventional planar linkages.
Conventional linkage constraints are relaxed allowing
sliding joints and telescoping links. The precise num-
ber of �xed links, telescoping links, and sliding contacts
is determined for this modern linkage to trace a Bézier
curve of any degree in 2D or 3D space. A suggested re-
alization of the linkage tracing a quadratic Bézier curve
is provided.

1 Introduction

Kapovich and Millson [KM02] proved A. B. Kempe�s
Universality Theorem: if C is a bounded portion of an
algebraic curve in the plane, then there exists a planar
linkage such that the orbit of one joint is precisely C.
Their theoretical result that there is a planar linkage
that traces out any given algebraic curve is very ele-
gant. Unfortunately, there is no e¢ cient method known
to realize this theorem. No method to systematically
design linkages that will trace any class of free-form al-
gebraic curves has been devised. This paper presents
such a method for the class of Bézier curves. Any me-
chanical application requiring an exact trace or cut of a
Bézier curve instead of an approximation can make use
of this method. The approach slightly strengthens the
notion of linkages, by allowing sliding joints and tele-
scoping links. It weakens the class of algebraic curves
to those known as Bézier curves, allowing the creation of
less complicated linkages. In addition, a natural result
of the design is that the curve traced by a joint is not
limited to 2D space, but can be extended to 3D space.
The type of linkage used to trace the Bézier curve will

be referred to as amodern linkage (m-linkage). In order
to realize such a linkage, the approach will assume that
the m-linkage is powered by multiple actuators coordi-
nated electronically. In e¤ect the electronic signal would
be an "electronic crank" and would be the single "prime
mover," which is often implemented as a physical crank
driving the mechanism in a conventional linkage.
To build the m-linkage, certain structures are used.

A frame must be built that is �xed. It is a collection
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Figure 1: A Quadratic Bézier Curve Traced by an m-
Linkage

of links held together by �xed joints. A link is a rigid
object such as a bar or rod and is modeled using a line
segment. In Figure 1, 
00 =

�
b00; b

0
1

�
and 
01 =

�
b01; b

0
2

�
are the links forming the frame with �xed joints b00; b

0
1;

and b02.
In order to create a curve, i.e., a path of one dimen-

sion, movement must occur. A telescoping link is a link
that is allowed to vary in length within a �xed well-
de�ned range. For instance 
10 =

�
b10; b

1
1

�
is a telescop-

ing link in Figure 1. In addition to this, two types of
movable joints are used. The �rst is a sliding joint that
can move from one end of the link to the other. Second
is a sliding contact that connects one link to itself and
moves similarly to the sliding joint. Joints b10 and b

1
1 are

sliding joints and b02 is a sliding contact in Figure 1. The
entire framework of links and joints is an m-linkage. A
curve can be traced using the m-linkage in the following
manner. As b10 slides on link 


0
0 and b

1
1 slides on 


0
1, the

sliding contact b02 traces a quadratic Bézier curve. The
way these joints slide determines the linkage movement
and the nature of the curve that is traced.
In the following sections, the linkage and the move-

ment of its joints will be de�ned and shown to trace a
Bézier curve, capturing its parametric direction.

2 Framework of the m-linkage

Let (V;E) be a graph, where V is a set of vertices and
E a set of edges. From [G01], a d-dimensional frame-
work Fp(V;E; p) consists of a graph (V;E) and a func-
tion p from the vertex space V into Euclidean d-space,
p: V �!Ed. Consider p(v), v 2 V , as the joints and
the line segments 


1
= [p(v1); p(v2)], fv1; v2g 2 E, as
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the links of the framework in Euclidean space. (V;E)
is the structure graph of the framework Fp(V;E; p) and
the function p is an embedding of V in d-space. The
structure graph captures the combinatorial properties of
the framework describing how the links and joints are
connected. These properties do not depend on the em-
bedding function, which determines the geometric prop-
erties such as the position of the joints, their range of
movement, and the lengths of the links. In this discus-
sion Euclidean space will refer to Euclidean d-space for
any d = 1; 2; or 3.

2.1 Structure Graph (Vs(n); Es(n)) and Structure
Digraphs (Vs(n); As(n))

The recursive subdivision algorithm de�ning the struc-
ture graph (Vs(n); Es(n)) in the framework Fc(n) is
de�ned by Factor [F05]. The structure graph is con-
structed from n+1 connected vertices v00 ; v

0
1 ; :::; v

0
n form-

ing a path �0 of n edges e00; e
0
1; :::; e

0
n�1. Path �

0 has
length n. These vertices and edges are the only ones
initially in Vs(n) and Es(n), respectively. For example,
v00 ; v

0
1 ; v

0
2 ; v

0
3 are the initial vertices in Vs(3) in Figure 2.

The initial path is a 0-level path, where the superscript
represents the level of each vertex and edge. Recursively
subdivide the edges of the path �0. The subdivision of
an edge is performed by removing each edge fv0i ; v0i+1g
and replacing it with a new vertex v1i and the edges
fv0i ; v1i g and fv1i ; v0i+1g. In Figure 2, vertices v10 ; v11 ; and
v12 "subdivide" edges fv00 ; v01g; fv01 ; v02g; and fv02 ; v03g, re-
spectively. Each new vertex v1i is added to Vs(n). Con-
nect the newly obtained vertices with new edges e1i cre-
ating a smaller path �1 of length n�1 and add only these
edges e1i = fv1i ; v1i+1g to Es(n). Continue this process
at each step until a path of length zero is created and
the last vertex vn0 (the distinguished vertex) is added
to Vs(n). The vertex v30 is the distinguished vertex in
Figure 2 where n = 3. The �nal structure graph there-
fore has Vs(n) = fv00 ; v01 ; :::; v0n; v10 ; v11 ; :::; v1n�1; :::; vn0 g
and Es(n) = feri jeri = fvri ; vri+1g, for r = 0; :::; n � 1
and i = 0; :::; n � r � 1g. By Factor [F05], the number
of vertices in Vs(n) is (n+ 1)(n+ 2)=2 and the number
of edges in Es(n) is n(n+ 1)=2.
In order to capture the direction of the movement of

a framework, the structure graph will be replaced with
a structure digraph. In a structure digraph, the edges
are oriented either from left to right, A)s (n); or, right to
left A(s (n). This re�ects the curve being traced in one
direction or the other. As(n) is the set of arcs A)s (n)
or A(s (n). See Figure 3, where the structure digraph
(Vs(3); A

)
s (3)) is shown. Thus, (Vs(n); As(n)) will be

the structure digraph that embedding function c maps
into the directed framework Fc(n) = (Vs(n); As(n); c)
in Euclidean space, where Fc(n) traces an nth degree
Bézier curve, n > 0.

Figure 2: Structure Graph n = 3, (Vs(3); Es(3))

Figure 3: Structure Digraph (Vs(3); A)s (3))

2.2 Embedding Function c depending on As(n).

The de�nition of the embedding function c depends on
the direction of As(n) in Fc(n): The function c is an iso-
morphic map of the sets Vs(n) and As(n) into Euclid-
ean space. It maps each of the initial n + 1 vertices
in indexed set Vs(n) to a distinct �xed position joint
b0i (i = 0; :::; n) in Euclidean space. As a result the n
arcs between these vertices are mapped to �xed length
links 
0i , for i = 0; :::; n�1. Note the length of each link
j
0i j is the distance, jb0i ; b0i+1j, between successive �xed
joints. This path of links forms the frame for Fc(n) in
Euclidean space. If As(n) is A)s (n), then the vertices
v10 ; v

1
1 ; :::; v

1
n�1; v

n�1
0 ; vn�11 ; :::; vn�1n�1;v

n
0 in Vs(n) are each

mapped by c to the initial position b0i of each link 

0
i

as a sliding joint or contact bn0 , which is mapped by
c from the distinguished vertex vn0 to b

0
0. As a result,

the remaining n(n� 1)=2 arcs in A)s (n) are mapped as
bounded telescoping links 
ri by c on top of the �xed-
length links 
0i , i = 0; :::; n�2, such that 
ri = [bri ; bri+1],
r = 1; : : : ; n� (i+1), are mapped to 
0i . Consequently,
each initial telescoping link has an initial length of the
�xed-length link to which it is mapped. If As(n) is
A(s (n), then a similar construction exists when the ver-
tices v10 ; :::; v

n�1
n�1;v

n
0 are mapped by c to the end position

b0i+1 of each link 

0
i .

From [F05], there is a tight bound �(n2) on the num-
ber of joints and joints in Fc(n) = (Vs(n); As(n); c) fol-
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lowing from the corollary:

Corollary 1 For integer n > 0, the framework Fc(n) =
(Vs(n); As(n); c) has (n+ 1)(n+ 2)=2 joints and n(n+
1)=2 links.

3 Motion and Geometry of the m-linkage

Let [0; 1] be the interval of time t, where t begins at
0 and ends at 1. Consider for each integer n > 0,
the directed framework Fc(n) = (Vs(n); As(n); c) with
indexed vertex set Vs(n) = fvri jr = 0; :::; n and i =
0; :::; n� rg. The de�nition of a motion for Fc(n) com-
prises the indexed family of functions cT ri (t) : [0; 1] �!
Ed, so that:
1. cT ri (t) = c(v

0
i ) = b

0
i , for i = 0; :::; n for all t 2 [0; 1];

(Frame of linkage.)
2. cT

r
i (t) = c(vri ) = bri = �br�1i + 	br�1i+1 , for r =

0; :::; n and i = 0; :::; n� r, where �(t) +	(t) = 1; (The
location of the sliding joint bri at t 2 [0; 1])
3. cT

n
0 (t) = c(vn0 ) = bn0 = �bn�10 + 	bn�11 = b (t)

where �(t) + 	(t) = 1; (The location of the sliding
contact bn0 at t 2 [0; 1])
4. Note that cT ri (t) is di¤erentiable on the interval

[0; 1], for all r, i; (Guarantees that the change of position
of the joints is smooth.)
5. jcT ri (t);c T ri+1(t)j = jbri ; bri+1j for all t 2 [0; 1]. (The

length of the links 
ri at t 2 [0; 1])
Note, by condition 1, the frame is rigid for the en-

tire time of the linkage�s motion. In conditions 2 and
3, the functions �(t) and 	(t) control the shape of the
curve and the direction in which it is traced. Condi-
tion 4, guarantees smooth motion. Finally, condition
5 addresses the length of each telescoping link at each
moment of time. Figure 4 illustrates the curve traced
by the motion. Again the direction in which the curve is
traced is determined by As(n). If As(n) is A)s (n), then
� = (1� t) and 	 = t and the curve is traced from left
to right. If As(n) is A(s (n), then � = t and 	 = (1� t)
and the curve is traced from right to left.
In order to actually realize a physical linkage to

trace the curve bn(t) based on the framework Fc(n) =
(Vc(n); Ac(n); c) and the trajectory functions cT ri (t), it
is necessary to determine the range of each link�s length
j
ri j. This information is completely determined from
the location of the initial n + 1 non-collinear joints
b00; b

0
1; :::; b

0
n chosen for the frame. Figure 4 illustrates

an m-linkage for n = 3 at a speci�c t 2 [0; 1]. In the
frame, the length of each link is �xed since it is deter-
mined by the �xed position of the initials joints. The
angle between each pair of links in the frame can be
determined by the direction cosines of the links. Using
the Law of Cosines and elementary calculus, the mini-
mum and maximum length of each telescoping link can
be found. This approach will bound the range of move-
ment of all telescoping links with joints sliding on the

Figure 4: A Cubic Bézier Curve Traced by an m-linkage

frame. From here the range of the remaining telescop-
ing links is fully determined from the range of movement
between any attached pair of telescoping links.

4 The Algorithm of de Casteljau and Bezier Curves

If � = (1 � t) and 	 = t in the motion of the linkage,
then the linkage behaves the same as the algorithm of
de Casteljau Algorithm [D63] for each t 2 [0; 1].
Algorithm:(de Casteljau) Let the points

b0; b1; :::; bn 2 Ed and t 2 R, where R is the set
of all real numbers. The point b(t) is constructed on a
curve by the recursive process:
1. b00 = b0; b

0
1 = b1; :::; b

0
n = bn .

2. bri = (1� t)br�1i + tbr�1i for r = 1; :::; n and
i = 0; :::; n� r:

3. b(t) = bn0 .
The following lemma, from [PW01], equates the de

Casteljau algorithm to Bézier curves and paves the way
to proving that Fc(n) = (Vs(n); As(n); c) traces a Bézier
curve.

Lemma 2 The algorithm of de Casteljau applied to
points b0; b1; :::; bn and the real number t evaluates the
polynomial Bézier curve with these control points at the
parameter value t.

Theorem 3 Given a Bézier curve bn(t) of any degree
integer n > 0 in Euclidean d-space, where d = 1; 2; or 3,
then an m-linkage tracing this curve can be constructed
by using the framework Fc(n) = (Vs(n); As(n); c) with
trajectory functions cT ri (t), t 2 [0; 1].

Proof. Given a Bézier curve bn(t) of any degree in-
teger n > 0 in Euclidean d-space, where d = 1; 2; or
3, bn(t) will have n + 1 control vertices b0; b1; :::; bn.
Using Lemma 2, the algorithm of de Casteljau can
generate this Bézier curve. For the given value n,
the structure graph (Vs(n); As(n)) in the framework
Fc(n) = (Vs(n); As(n); c), where c maps into d-space is
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determined for the linkage. The embedding function c
will de�ne the joints of the frame of the linkage, based on
the location of the b0; b1; :::; bn, and the remaining joints.
Applying the trajectory functions cT ri (t), t 2 [0; 1] to
Fc(n) results in a linkage that traces a Bézier curve by
joint bn0 , since cT

r
i (t) continuously applies the algorithm

of de Casteljau to the movement of the linkage as t goes
from 0 to 1. As a result, every point on the Bézier curve
bn(t) is generated for t 2 [0; 1]. �

See Figure 4, which illustrates an m-linkage tracing a
cubic Bézier curve.
As a consequence, the m-linkage inherits many of the

properties of a Bézier curve. Consider the con�guration
space of the curve and the m-linkage itself. A con�gu-
ration space is de�ned as the set of all con�gurations or
states of the object permitted by the motion constraints,
with paths in space corresponding to motions of the ob-
ject [DO04]. In particular, the movement con�guration
space of the sliding contact bn0 corresponds to the traced
Bézier curve bn(t) and the con�guration space of the
linkage is totally within the convex-hull formed by the
extreme points of b0; b1; :::; bn which form the frame.

5 Example Realization: The Quadratic Bezier Curve

Since before the time of James Watt, linkages were de-
signed to be powered by a single �prime mover� with
all functions mechanically coordinated. This �prime
mover�would often be implemented as a single crank
driving the mechanism. A more modern approach for
linkages has been made possible with recent develop-
ments in computer technology, coupled with improve-
ments in electric motors and actuators [WK04]. This
approach allows machines that are powered by multi-
ple actuators coordinated electronically. In e¤ect, the
electronic signal is an �electronic crank�and acts as the
single �prime mover.�Such modern machines are sim-
pler, less expensive, more easily maintained, and more
reliable. This modern linkage is assumed in the realiza-
tion of a linkage tracing a Bézier curve.
The linkage that traces the quadratic Bézier curve in

Figure 1 could be realized as follows:
At t = 0, an actuator A00 can be placed at b

0
0 (the

start of link 
00) and an actuator A
0
1 would be placed at

b01 (the start of link 

0
1). Each actuator is controlled by

the same electronic signal for a duration of t, as t varies
from 0 to 1, and is designed to move the distance along
link 
00 and link 


0
1, respectively, maintaining the ratio

t=(1 � t) of the lengths L1 = j
00j and L2 = j
01j. Each
actuator can be driven by a pinion on a rack which is
the length of each respective link 
00 and link 


0
1. The

pinion of A00 can be a cylinder containing, either a line
or steel/wire cable with some elasticity. This line (link

10) from A00 can be attached to A

0
1 having the length

of L1 at t = 0 and the length of L2 at t = 1. As t

changes, A01 takes up the line that A
0
0 spools out by its

pinion, always maintaining a taut line (a link). As the
pinion of A00 moves along the length L1 of its rack, link

10 spools out as line and is taken up by the pinion of A

0
1

as A01 moves the length L2 of its rack. The movement
of the tracing-joint b20 = b

2(t), in Figure 1, is a natural
consequence of the above behavior of the two driving
actuators. Note the tracing-joint b20 = b2(t) is always
at the same �xed place on the line, and its movement
is only simulated by the rolling up of the line from A00
by A01. At time t = 0, a �pencil� can be placed at the
point of the line located at b00. As the pinions move
along their racks, the �pencil�moves during the spool-
out and rolling-up process. At time t = 1, the �pencil�
is at point b02. Consequently the �pencil�has traced the
quadratic Bézier Curve.

6 Conclusion

A method has been presented allowing linkages to be
systematically designed to trace any curve in the class
of algebraic free-form curves known as Bézier curves.
This method has been shown to be e¤ective in design-
ing an m-linkage for tracing a given Bézier curve of any
degree n in 2D or 3D space. Further research will ad-
dress extending this method to other classes of free-form
curves, e.g., rational Bézier curves, B-Splines, NURBS,
and surfaces.
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