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1 Introduction

We study the problem of “staying in the middle”: we
have a set of points moving in a geometric space and
wish to maintain another point (possibly one of the given
points, but not necessarily) that stays continuously “in
the middle” of the moving set. More precisely, inR

1 we
wish to maintain the median or, more generally, a point
of rankk. In R

2 we wish to maintain suitable analogs
of the median and point of rankk, defined as follows.
Let P be a point set inRd, and define thedepth∆(p) of
a pointp ∈ R

d as the minimum number of points ofP
on either side of any hyperplane passing throughp. A
point with depth at leastδn is called aδ-center point. A
1/(d + 1)-center point is called just acenter point, and
it generalizes the concept of median. It has been proven
using Helly’s Theorem that any point set has a center
point [10]. ForR

2, given somek ≤ n/2, the set of
points with depth at leastk is calledk-th depth contour,
denoted byDk.

We study both exact and approximate algorithms for
kinetic medians (inR1) and kinetic center points and
depth contours (inR2). As we will see, in both cases
the approximate algorithms offer far greater stability
and maintenance efficiency, for a very modest loss in
the quality of the partitions they can generate. Another
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advantage of approximation algorithms is that we can
maintain not only the (median or) center point of the
current configuration but also a compact representation
of the trajectory of an approximate (median or) center
point over the entire motion of points, so we can answer
various queries on the center point of any future config-
uration of points. Such queries are central to spatial-
temporal database systems. A main tool we develop
for these approximate algorithms is the efficient main-
tenance of anε-approximation of a range space under
point insertion and deletion — which we believe to be
of independent interest.

Related work. Finding the median (or more gener-
ally the point of rankk, for some givenk) of a set of
points inR

1 can be done in linear time. If the points
move on the real line, then maintaining the point of rank
k is closely related to the concept oflevels in the ar-
rangement defined by the trajectories in thext-plane, as
defined next. Thelevelof a pointp ∈ R

2 in an arrange-
mentA(Γ) defined by a setΓ of x-monotone curves is
the number of curves inΓ lying below p. Let Λk(Γ)
denote the closure of the edges ofA(Γ) whose level is
k; Λk(Γ) is an x-monotone curve and it is called the
k-level of the arrangement. Hence, the point of rank
k at timet0 is given by the trajectory that is on thek-
level for t = t0. Set λk(Γ) = |Λk(Γ)|, and define
λk(n) = max{λk(Γ)}, where the maximum is taken
over all setsΓ of n curves of a given type (lines, for
example, or algebraic curves of a certain maximum de-
gree). Maintaining the median thus reduces to com-
puting then/2-level, andλn/2(n) bounds the number
of changes of the median if the trajectories in thext-
plane are of the given type. IfΓ is a set ofn lines,
thenλk(Γ) = O(n4/3) [9]. For general curves, a recent
result of Chan [4] implies thatλk(Γ) = O(n2−1/2s),
wheres is the maximum number of intersection points
between two curves.

Maintaining an ε-approximate median reduces to
computing anε-approximaten/2-level, that is, anx-
monotone curve lying between the(1− ε)n/2-level and
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the (1 + ε)n/2-level. There has been a lot of work
on computing approximate levels. For line arrange-
ments, Edelsbrunner and Welzl [11] showed that anε-
approximate median level with at mostdλn/2(n)/(εn)e
edges exists, and Matoušek [13] gave an algorithm
for obtaining anε-approximate median level of con-
stant complexity (depending onε only). This idea was
further explored by Agarwalet al. [1], who obtained
an algorithm to compute in timeO(n log n/ε2) an ε-
approximate median of sizeO(1/ε2) for arrangements
of lines or line segments.

In 2-D, a center point can be computed in linear
time [12]. Clarksonet al. [7] proposed a randomized
algorithm to compute anε-approximate center point in
time polynomial in the dimension and1/ε. Miller et al.
usedO(n2) time and space to find all the depth contours,
by computing the arrangement of then lines in the dual
plane [14]. A singlek-th depth contour can be computed
in O(n log2 n) time [5]. To our knowledge, there are
no prior results on maintaining the exact/approximate
depth contours or center points under motion.

Our results. Most of our algorithms are based on the
kinetic data structure(KDS) framework, originally pro-
posed by Baschet al. [2]. We start by briefly looking
at the problem of maintaining medians and points of a
given rankk for points moving inR1. Then we present
two KDS’s for maintaining a center point of a set of
n points moving in the plane. The first KDS actually
maintains thek-th depth contour for a given0 ≤ k < n.
As a byproduct, it gives a KDS for maintaining the en-
tire center region (the set of all center points). It requires
O(n2) certificates and processesO(n4+δ) events under
pseudo-algebraic motion of points, each event requiring
O(log2 n) time. The second KDS maintains a subset of
the center points. It needs onlyO(n log n) certificates
but processesO(n7+δ) events in the worst case.

Since these exact algorithms are quite expensive, we
then study approximation algorithms. We first describe
an algorithm for maintaining anε-approximationA ⊆ S
of a finite range space(S,R) under insertions and dele-
tions of points. We show that a center point ofA for a
suitably defined range space is anε-approximate center
point of S. Whenever we computeA, we also compute
in O(1/εO(1)) time at-monotone polygonal curveγ so
thatγ(t) is a center point ofA(t). Therefore for anyt,
we can compute inO(log(1/ε)) time anε-approximate
center point of the points inS(t) based on their current
trajectories. The setA does not change as long as the
trajectories of the points inS don’t change. Whenever

a pointp changes its trajectory, we deletep from S and
re-insert it with the new trajectory. Our algorithm can
updateA in (log(n)/ε)O(1) time. The same idea can
also be used to maintain anε-approximate median of a
set of points moving inR1.

The ε-approximation based algorithm maintains an
ε-approximate median that changesO(1/ε4 log2(1/ε))
times, and the total time spent isO(n/εO(1)). If the tra-
jectories of the points are known in advance, then we
can improve this. For example, if the points have fixed
velocities, we give a Las Vegas algorithm such that the
ε-approximate median changesO(1/ε4/3 log2(1/ε))
times, by spendingO(n/ε1/3 log(1/ε)) expected time,
thus improving the result of Agarwal et al. [1].

Due to lack of space, we omit most details from this
extended abstract.

2 Exact Algorithms

Maintaining the median. Maintaining the exact
median of a setS of n points moving inR

1, or more
generally, maintaining the point of rankk for a fixedk,
can be done by adapting the HeapSweep algorithm [3].
We maintain (i) the point of rankk, (ii) the maximum
of S<k(t), the points of rank less thenk, in a kinetic
tournament, and (iii) the minimum ofS>k(t), the points
with rank greater thank, in a kinetic tournament. Fol-
lowing the analysis of [3], we prove the following.

Theorem 1 LetS be a set ofn points moving inR1, and
let k be an integer. We can maintain the point ofS of
rankk using a KDS that usesO(n) certificates. Assum-
ing pseudo-algebraic motion, the number of events pro-
cessed by the KDS isO(λk(n) log2 n), and each event
can be handled inO(log n) time.

Maintaining the depth contour and center region.

Given a setS of n points moving inR
2 and an integer

0 ≤ k < dn/2e, we describe a KDS for maintaining the
k-th depth contourDk of S as the points inS move. The
center region ofS is simplyDbn/3c. Note that thek-th
depth contour of a setP of n stationary points in the
plane is also closely related to thek-th and(n − k)-th
levels in arrangements: if we dualize [8]P , we obtain
a setP ∗ of n lines, and a point at depthk dualizes to
a line lying betweenΛk(P ∗) andΛn−k(P ∗). Hence,
the dual of points whose depth is at leastk is the region
lying between the lower hull ofΛn−k(S∗) and the upper
hull of Λk(S∗). Thus the problem at hand reduces to the
following. Let L = {`1, . . . , `n} be a set ofn lines
in the plane, each moving independently, i.e.,`i : y =
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ai(t)+bi(t)x, whereai(·) andbi(·) are polynomials int.
We wish to maintain the upper (or lower) hull ofΛk(L),
thek-th level ofA(L), as the lines inL move.

For each linè ∈ L, let v−(`) (resp.v+(`)) be the
leftmost (resp. rightmost) point ofΛk(L) ∩ `. Let V =
{v−(`), v+(`) | ` ∈ L}. The upper hull ofΛk(L) is
the same as that ofV . We maintain the upper hull ofV
using the kinetic data structure described in [2]. In more
detail, we proceed as follows.

For a line` ∈ L, let Σ(`) be the sequence of vertices
of A(L) ∩ `, sorted from left to right.Σ(`) partitions`
into the edges ofA(L) on`. For each edgee, letλ(e) be
the level of the points ine. Note that ife′ lies immedi-
ately to the right ofe, thenλ(e′) = λ(e) ± 1 depending
on the local geometric situation. We maintain the set
E(`) of all the edges oǹ whose level isk. We add the
left endpoint of the leftmost edge and the right endpoint
of the rightmost edge ofE(`) (i.e.,v−(`), v+(`)) to V .
For each̀ , we maintain: (i) the sequence of vertices and
edges of the arrangement on`, (ii) E(`), and (iii)v−(`),
v+(`). In addition, we also use a KDS to maintain the
upper hull ofV , as the lines inL move [2]. We will also
need it to handle insertion and deletion of points.

There are three types of events that the algorithm has
to handle to maintain the above structures:

(E1) Two lines̀ 1, `2 become parallel.
(E2) Three lines̀1, `2, `3 become concurrent.
(E3) An event of the KDS for maintainingUH(V ).

The KDS for maintaining UH(V ) maintains
O(n log n) certificates. We need additionalO(n2)
certificates to detect events of type (E1) and (E2): (i)
leftmost and right vertices along each line ofL, and (ii)
adjacent pairs of vertices ofA(L) along each line of
L. We can show that the total number of events of all
types isO(n4+δ), and that each event can be handled in
O(log2 n) time, leading to the following result.

Theorem 2 Let S be a set ofn points moving in the
plane. We can maintain the center region ofS or, more
generally, thek-th depth contour ofS, usingO(n2) cer-
tificates. The algorithm processesO(n4+δ) events un-
der algebraic motion ofS, and each event can be pro-
cessed inO(log2 n) time.

A space-efficient algorithm for maintaining a cen-

ter point. We now describe a KDS for maintaining a
center point of a setS of n = 3m points moving in the
plane that uses onlyO(n log n) certificates. First, let us
assume that the points inS are stationary. A result by
Tverberg [16] implies thatS can be partitioned intom

triples S1, . . . , Sm so that the intersection of triangles
∆i = conv(Si), 1 ≤ i ≤ m, is nonempty. Such a
partition is called aTverberg partition, and any point in
∆ =

⋂m
i=1 ∆i is called aTverberg point. Any point in

∆ is also a center point. Moreover, a Tverberg partition
in the plane can be computed inO(n log n) time [15].
Since each Tverberg triangle∆i can be regarded as the
intersection of three halfplanes, each bounded by a line
passing through a pair of points in∆i, the region∆ is
the intersection of a setH of 3m = n halfplanes. In the
dual plane, a halfplaneh ∈ H is mapped to a pointh∗

and the intersection of the halfplanes maps to the con-
vex hull of the setH∗ of points. Therefore we use a
KDS to maintain the convex hullCH(H∗) [2]; it uses
O(n log n) certificates.

Now as the points inS move, we wish to maintain∆.
More precisely, we compute an initial Tverberg partition
of S in O(n log n) time and maintain∆ using the ki-
netic convex hull structure described by Baschet al.[2],
with the following twist. Whenever∆ shrinks to a point,
we update the underlying Tverberg partition so that the
interior of ∆ after the modification becomes nonempty.
The idea is similar to the one used by Tverberg [17]. We
omit the details of the events and the analysis.

Theorem 3 One can maintain a center point of a setS
of moving points in the plane usingO(n log n) certifi-
cates. The algorithm processesO(n7+δ) events under
algebraic motion ofS, and each event can be processed
in O(log2 n) time.

3 Maintaining ε-approximations

A range space is a pairX = (S,R), whereS is a set
andR ⊂ 2S. S is called the set ofpoints, andR is
called the set ofranges. In the sequel we deal with fi-
nite range spaces, whereS is finite. A subsetA ⊆ S
is called anε-approximationfor X if, for every range
R ∈ R, ||A ∩ R|/|A| − |R|/|S|| < ε. We give a de-
terministic algorithm, based on [6], for maintaining an
ε-approximation as points are inserted or deleted.

Theorem 4 Given a range spaceX = (S,R) of
VC-dimensiond, one can (deterministically) maintain
an ε-approximation ofX of sizeO(1/ε2 log(1/ε)), in

O
(

log2d+3 n
ε2d+2 (log(log(n)/ε))

2d+2
)

time per insertion or

deletion, for a parameterε > 0.
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4 Approximation Algorithms

The ε-approximation based algorithms. Let S be
a set ofn points moving inR

1, andR the set of ver-
tically downward rays in thetx-plane. Forρ ∈ R, let
Sρ = {p | there is at with p(t) ∈ ρ}. We define the
range spaceM = (S, {Sρ | ρ ∈ R}). Let A ⊆ S be an
ε-approximation ofS for the range spaceM. Then for
any t, the median ofA(t) is anε-approximate median
of S(t).

If the trajectories ofS are algebraic then the VC-
dimension ofM is finite. Therefore we can use the
algorithms of the previous section to maintain anε-
approximation ofS. We can compute the median level
of the trajectories ofA. Since we compute the entire
median level, there are no events unless the trajectory
of a point inS changes. When the trajectory of a point
changes,A is recomputed in(log(n)/ε)O(1) time using
Theorem 4, and we recompute the median level ofA in
(1/ε)O(1) additional time. We thus obtain the following.

Theorem 5 Let S be a set of points moving inR1 (or
R

2), and letε > 0 be a parameter. Assuming that the
motion ofS is algebraic, we can construct a data struc-
ture that can be updated in(log(n)/ε)O(1) time when-
ever the trajectory of a point inS changes, and that, for
any timet, can return anε-approximate median (orε-
approximate center point) ofS(t) in O(log(1/ε)) time
based on the current trajectories ofS.

Faster off-line algorithms. An ε-approximate me-
dian of a setS of n points moving inR

1 can be com-
puted more efficiently off-line. However, unlike the
algorithm of Section 4, theε-approximate median we
maintain is not necessarily one of the input points, and
we cannot change the trajectory of points on-line.

Theorem 6 Let S be a set of points moving inR1, and
ε > 0 a constant. Assuming that their trajectories are
algebraic with degree of motionµ, we can compute in
O(n log(1/ε)+1/εO(µ2)) time at-monotone curveγ of
sizeO(1/ε2) so that the rank ofγ(t), for anyt ∈ R, lies
betweenn/2(1 ± ε).

We can compute anε-approximate median with fewer
breakpoints if the points have fixed velocities.

Theorem 7 LetS be a set of points moving inR1 mov-
ing with fixed velocity, andε > 0 a parameter. We
can compute in expectedO((n/ε1/3) log(1/ε)) time a
t-monotone curveγ of sizeO(1/ε4/3 log2(1/ε)) so that
the rank ofγ(t), for anyt ∈ R, lies betweenn/2(1±ε).
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