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1 Introduction advantage of approximation algorithms is that we can
maintain not only the (median or) center point of the

We study the problem of “staying in the middle”: we current configuration but also a compact representation
have a set of points moving in a geometric space and of the trajectory of an approximate (median or) center
wish to maintain another point (possibly one of the given point over the entire motion of points, so we can answer
points, but not necessarily) that stays continuously “in various queries on the center point of any future config-
the middle” of the moving set. More precisely, it we uration of points. Such queries are central to spatial-
wish to maintain the median or, more generally, a point temporal database systems. A main tool we develop

of rank k. In R? we wish to maintain suitable analogs for these approximate algorithms is the efficient main-

of the median and point of rank defined as follows.
Let P be a point set iiR?, and define thelepthA(p) of
a pointp € R? as the minimum number of points &f
on either side of any hyperplane passing thropgh
point with depth at leasin is called aj-center point A
1/(d + 1)-center point is called just eenter pointand

tenance of ar-approximation of a range space under
point insertion and deletion — which we believe to be
of independent interest.

Related work. Finding the median (or more gener-

it generalizes the concept of median. It has been provenally the point of rankk, for some giverk) of a set of
using Helly’s Theorem that any point set has a center points inR! can be done in linear time. If the points

point [10]. ForR?, given somek < n/2, the set of
points with depth at leagtis calledk-th depth contour
denoted byDy,.

We study both exact and approximate algorithms for
kinetic medians (inR') and kinetic center points and
depth contours (ilR?). As we will see, in both cases
the approximate algorithms offer far greater stability
and maintenance efficiency, for a very modest loss in
the quality of the partitions they can generate. Another
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move on the real line, then maintaining the point of rank
k is closely related to the concept t#velsin the ar-
rangement defined by the trajectories in ttieplane, as
defined next. Théevelof a pointp € R? in an arrange-
mentA(T") defined by a sel' of z-monotone curves is
the number of curves il lying belowp. Let A, (T")
denote the closure of the edgesAfT") whose level is
k; Ax(T) is anz-monotone curve and it is called the
k-level of the arrangement. Hence, the point of rank
k at timet, is given by the trajectory that is on the
level fort = tg. SetA;(T') = |Ax(T)|, and define
Ak(n) = max{\;(T")}, where the maximum is taken
over all sets” of n curves of a given type (lines, for
example, or algebraic curves of a certain maximum de-
gree). Maintaining the median thus reduces to com-
puting then/2-level, and),, />(n) bounds the number
of changes of the median if the trajectories in the
plane are of the given type. If is a set ofn lines,
then),(T') = O(n*/3) [9]. For general curves, a recent
result of Chan [4] implies thak,(T') = O(n?~1/29),
wheres is the maximum number of intersection points
between two curves.

Maintaining an e-approximate median reduces to
computing anc-approximaten/2-level, that is, an-
monotone curve lying between the— ¢)n /2-level and



the (1 4+ ¢)n/2-level. There has been a lot of work
on computing approximate levels. For line arrange-
ments, Edelsbrunner and Welzl [11] showed thatan
approximate median level with at mgst,, /5(n)/(en)|
edges exists, and MatouSek [13] gave an algorithm
for obtaining anc-approximate median level of con-
stant complexity (depending anonly). This idea was
further explored by Agarwaét al. [1], who obtained
an algorithm to compute in tim&(nlogn/e?) an e-
approximate median of siz@(1/¢2) for arrangements
of lines or line segments.

In 2-D, a center point can be computed in linear
time [12]. Clarksonet al. [7] proposed a randomized
algorithm to compute am-approximate center point in
time polynomial in the dimension and . Miller et al.
usedO(n?) time and space to find all the depth contours,
by computing the arrangement of thdines in the dual
plane [14]. A single:-th depth contour can be computed
in O(nlog®n) time [5]. To our knowledge, there are
no prior results on maintaining the exact/approximate
depth contours or center points under motion.

Our results. Most of our algorithms are based on the
kinetic data structurédKDS) framework, originally pro-
posed by Basclet al.[2]. We start by briefly looking
at the problem of maintaining medians and points of a
given rankk for points moving inR'. Then we present
two KDS's for maintaining a center point of a set of
n points moving in the plane. The first KDS actually
maintains thé:-th depth contour for a givel < k < n.

As a byproduct, it gives a KDS for maintaining the en-
tire center region (the set of all center points). It regsiire
O(n?) certificates and process@%n**?) events under

a pointp changes its trajectory, we delgtdrom .S and
re-insert it with the new trajectory. Our algorithm can
updateA in (log(n)/e)°™) time. The same idea can
also be used to maintain arapproximate median of a
set of points moving ifR*.

The e-approximation based algorithm maintains an
e-approximate median that chang@él /* log®(1/¢))
times, and the total time spent@n/e®™M). If the tra-
jectories of the points are known in advance, then we
can improve this. For example, if the points have fixed
velocities, we give a Las Vegas algorithm such that the
e-approximate median changes(1/%/3log®(1/¢))
times, by spending(n/s'/3log(1/¢)) expected time,
thus improving the result of Agarwal et al. [1].

Due to lack of space, we omit most details from this
extended abstract.

2 Exact Algorithms

Maintaining the median. Maintaining the exact
median of a sefS of n points moving inR', or more
generally, maintaining the point of rarikfor a fixedk,

can be done by adapting the HeapSweep algorithm [3].
We maintain (i) the point of rank, (ii) the maximum

of S<x(t), the points of rank less thef in a kinetic
tournament, and (iii) the minimum o ;. (¢), the points
with rank greater tha, in a kinetic tournament. Fol-
lowing the analysis of [3], we prove the following.

Theorem 1 LetS be a set of points moving irR!, and

let £ be an integer. We can maintain the point$bf
rank k& using a KDS that use8(n) certificates. Assum-
ing pseudo-algebraic motion, the number of events pro-
cessed by the KDS 8(\,(n)log® n), and each event

pseudo-algebraic motion of points, each event requiring ¢an be handled iW(log n) time.

O(log? n) time. The second KDS maintains a subset of
the center points. It needs onfy(n logn) certificates
but processe®(n"*9) events in the worst case.

Maintaining the depth contour and center region.
Given a setS of n points moving inR? and an integer

Since these exact algorithms are quite expensive, we0 < k < [n/2], we describe a KDS for maintaining the

then study approximation algorithms. We first describe
an algorithm for maintaining asrapproximationrd C S

of a finite range spadg5, R) under insertions and dele-
tions of points. We show that a center pointdfor a
suitably defined range space isaapproximate center
point of S. Whenever we computé, we also compute
in O(1/¢°(M) time at-monotone polygonal curve so
that~(¢) is a center point ofA(¢). Therefore for any,
we can compute iD(log(1/¢)) time ans-approximate
center point of the points i§(t) based on their current
trajectories. The sefl does not change as long as the
trajectories of the points i don’t change. Whenever

k-th depth contouP);, of S as the points irh move. The
center region of' is simply D|,,/3/. Note that thek-th
depth contour of a seP of n stationary points in the
plane is also closely related to thketh and(n — k)-th
levels in arrangements: if we dualize [B], we obtain
a setP* of n lines, and a point at depth dualizes to
a line lying betweenm\;(P*) and A,,_x(P*). Hence,
the dual of points whose depth is at leass the region
lying between the lower hull of,,_(S*) and the upper
hull of A;.(S*). Thus the problem at hand reduces to the
following. Let L = {¢1,...,¢,} be a set ofn lines
in the plane, each moving independently, i®.; y =



a;(t)+b;(t)z, wherea, (-) andb;(-) are polynomials ir.
We wish to maintain the upper (or lower) hull &f, (L),
the k-th level of A(L), as the lines i move.

For each line/ € L, letv=(¢) (resp.v™(¢)) be the
leftmost (resp. rightmost) point df, (L) N ¢. LetV =
{v=(¢),v*(¢) | ¢ € L}. The upper hull ofA;(L) is
the same as that &f. We maintain the upper hull df
using the kinetic data structure described in [2]. In more
detail, we proceed as follows.

Foralinel € L, let (¢) be the sequence of vertices
of A(L) N ¢, sorted from left to right3(¢) partitions¢
into the edges afi(L) on{. For each edge, let A(e) be
the level of the points ir. Note that ife’ lies immedi-
ately to the right ok, thenA(e’) = A(e) = 1 depending
on the local geometric situation. We maintain the set
E(¢) of all the edges oii whose level is:. We add the
left endpoint of the leftmost edge and the right endpoint
of the rightmost edge aoF'(¢) (i.e.,v~(£),vT(¢)) to V.

For eacl?, we maintain: (i) the sequence of vertices and
edges of the arrangement ar{ii) E(¢), and (i) v~ (¢),
vT(¢). In addition, we also use a KDS to maintain the
upper hull ofV, as the lines i move [2]. We will also
need it to handle insertion and deletion of points.

triples Sy, ..., S,, so that the intersection of triangles
A, conv(S;), 1 < ¢ < m, is nonempty. Such a
partition is called al'verberg partition and any point in

A =, A, is called aTverberg point Any point in

A is also a center point. Moreover, a Tverberg partition
in the plane can be computed @(n logn) time [15].
Since each Tverberg triangle; can be regarded as the
intersection of three halfplanes, each bounded by a line
passing through a pair of points ix;, the regionA is

the intersection of a sé&{ of 3m = n halfplanes. In the
dual plane, a halfplank € H is mapped to a point*

and the intersection of the halfplanes maps to the con-
vex hull of the setH* of points. Therefore we use a
KDS to maintain the convex hull H(H*) [2]; it uses
O(nlogn) certificates.

Now as the points i move, we wish to maintaif.
More precisely, we compute an initial Tverberg partition
of S in O(nlogn) time and maintaim\ using the ki-
netic convex hull structure described by Bastlal.[2],
with the following twist. Wheneveh shrinks to a point,
we update the underlying Tverberg partition so that the
interior of A after the modification becomes nonempty.
The idea is similar to the one used by Tverberg[17]. We

There are three types of events that the algorithm has gmit the details of the events and the analysis.

to handle to maintain the above structures:

(E1) Two linesty, £> become parallel.
(E2) Three line€, £, {3 become concurrent.
(E3) An event of the KDS for maintainirig™ (V).

The KDS for maintaining YH (V) maintains
O(nlogn) certificates. We need addition&(n?)
certificates to detect events of type (E1) and (E2): (i)
leftmost and right vertices along each linelgfand (ii)
adjacent pairs of vertices od(L) along each line of
L. We can show that the total number of events of all
types isO(n?*?), and that each event can be handled in
O(log? n) time, leading to the following result.

Theorem 2 Let S be a set ofn points moving in the
plane. We can maintain the center region%br, more
generally, thek-th depth contour of, usingO(n?) cer-
tificates. The algorithm processéXn**?) events un-
der algebraic motion o, and each event can be pro-
cessed ir0(log® n) time.

A space-efficient algorithm for maintaining a cen-
ter point. We now describe a KDS for maintaining a
center point of a sef of n = 3m points moving in the
plane that uses onl§(n logn) certificates. First, let us
assume that the points i are stationary. A result by
Tverberg [16] implies thab can be partitioned intan

Theorem 3 One can maintain a center point of a set

of moving points in the plane usir@(n logn) certifi-
cates. The algorithm process€§n”*?) events under
algebraic motion of5, and each event can be processed
in O(log® n) time.

3 Maintaining c-approximations

A range space is a pakK = (S, R), whereS is a set
andR C 2°. S is called the set opoints andR is
called the set ofanges In the sequel we deal with fi-
nite range spaces, whefeis finite. A subsetd C S

is called ans-approximationfor X if, for every range
R € R, ||ANR|/|A| - |R|/|S|| < e. We give a de-
terministic algorithm, based on [6], for maintaining an
g-approximation as points are inserted or deleted.

Theorem 4 Given a range spaceX (S,R) of
VC-dimensiond, one can (deterministically) maintain

an e-approximation ofX of sizeO(1/£2log(1/¢)), in
O(@(log(log(n)/e))w”) time per insertion or

£2d+2

deletion, for a parameter > 0.
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