
Space-Efficient Algorithms for Klee’s Measure Problem

Eric Y. Chen∗ Timothy M. Chan†

Abstract

We give space-efficient geometric algorithms for three
related problems. Given a set of n axis-aligned rectan-
gles in the plane, we calculate the area covered by the
union of these rectangles (Klee’s measure problem) in
O(n3/2 log n) time with O(

√
n) extra space. If the input

can be destroyed and there are no degenerate cases and
input coordinates are all integers, we can solve Klee’s
measure problem in O(n log2 n) time with O(log2 n) ex-
tra space. Given a set of n points in the plane, we find
the axis-aligned unit square that covers the maximum
number of points in O(n log3 n) time with O(log2 n) ex-
tra space.

1 Introduction

When we process massive data sets, memory limitation
can be a significant bottleneck. So-called space-efficient
algorithms aim at controlling the total space consumed.
In this setting, the input is given in one array, and al-
gorithms can read from and write to this array. Besides
this array, the algorithms are only allowed to manipu-
late a limited amount of memory that is sublinear to the
size of the input. The output is written into either a pre-
fix of the array or a write-only stream. Studies on tradi-
tional problems, such as sorting and selection, were done
more than two decades ago [7, 10, 14]. Space-efficient
dynamic search structures were also proposed [9, 11].
Recently, researchers began to study space-efficient al-
gorithms for geometric problems. Several basic 2D and
3D problems have been studied [1, 2, 3, 4, 5, 6]. In this
paper we give space-efficient solutions for Klee’s prob-
lem [12, 13], and the closely related unit-square point
covering problem [8]. For Klee’s problem, the input
is a set of n rectangles given by x and y coordinates
(x1, x2, y1, y2). The output is the area covered by the
union of those rectangles. For the second problem, the
input is a set of n planar points and the output is the
center of the target unit square that covers the maxi-
mum number of points from the given point set.

To solve these three problems efficiently, we normally
perform a sweep over the plane. This sweepline algo-

∗School of Computer Science, University of Waterloo, Ontario,

N2L 3G1, Canada, y28chen@cs.uwaterloo.ca.
†School of Computer Science, University of Waterloo, Ontario,

N2L 3G1, Canada, tmchan@cs.uwaterloo.ca. Research supported

by an NSERC grant and a Premier’s Research Excellence Award.

rithm needs one priority queue and one segment tree
structure. Several papers proposed ideas of maintaining
multiple nonlinear data structures space-efficiently [3,
5, 6]. However, those data structures can only combine
priority queues with a search structure of ordered points
in one dimension. It is more difficult to maintain a dy-
namic search structure of intervals in one dimension in
the space-efficient setting.

We give three new strategies for the search structure
of one-dimensional intervals. We will apply 2D kd-trees
in a new way in solving Klee’s problem; we will describe
an implicit data structure for unique-length intervals in
solving unit-square covering problem; we also will give
an alternative implicit structure, which we can use to
solve Klee’s problem more efficiently but in a destructive
way.

2 The Sweepline Algorithm

We still follow the traditional sweepline idea to solve
Klee’s problem [13]. To perform the sweep over the
plane from left to right, we need a priority queue Q to
record the events to process, and also need a structure
T to maintain the rectangles intersecting the vertical
sweepline. The structure T should be able to maintain
the total length of the sweepline (cover(T )) covered by
intersecting rectangles and should also support insertion
and deletion of rectangles. With Q and T , we can solve
Klee’s problem as follows, where x(e) returns the x-
coordinate of an event e.

Set Q and T empty
For each left x-coordinate of the rectangle

Add a left-end event into Q

For each right x-coordinate of the rectangle
Add a right-end boundary event into Q

Set area = 0
Set xprevious = −∞
While Q is not empty

area = area + cover(T ) ∗ (x(e) − xprevious)
Case: left-end event

Add the corresponding rectangle into T

Case: right-end event
Remove the corresponding rectangle from T

xprevious = x(e)
Return area

1



The unit-square covering problem can be viewed as a
variant of Klee’s problem. Transform each given point
p to a unit square centered at p. Then the unit-square
covering the maximum number of points corresponds to
the point covered by the maximum number of squares.
In order to find this point, we only need to modify T in
the previous algorithm. The modification of T should
still support insertion and deletion of a rectangle (here
it would be a square), but it needs to record the position
covered by the maximum number of squares along the
sweepline instead of the total covered length. For each
point, the number of squares covering it is called the
depth of that point. We then perform a sweep over
these squares.

3 A Space-Efficient Solution for Klee’s Problem

We use kd-trees in a new way. For each rectangle
(x1, x2, y1, y2), we map it to a 2D point (y1, y2). By
using this idea, we can maintain both Q and T within
O(

√
n) extra space as follows.

This kd-tree Querykd can be stored in the input array
without using any extra space, as noted in [3]. When
we initialize the structure, the median is picked by a
space-efficient selection algorithm [10].

For a given range I = (ybottom, ytop), we say an in-
terval (y1, y2) spans over I if it contains I, and say
that it crosses I if it intersects I but does not span
over I. We also say a rectangle spans over I if its y-
interval spans over I, and say a rectangle crosses I if
its y-interval crosses I. To report all rectangles crossing
(ybottom, ytop), we query Querykd to find all (y1, y2) such
that (ybottom ≤ y1 ≤ ytop or ybottom ≤ y2 ≤ ytop), and
report all qualified rectangles. We can query Querykd

in O(
√

n + m) time, where n is the number of rect-
angles and m is the number of rectangles crossing
(ybottom, ytop).

Before we initialize Querykd in the array, we horizon-
tally divide the plane into O(

√
n) strips, such that each

strip contains
√

n y-coordinates of rectangles. With
√

n

extra space, this can be done by O(
√

n) linear scans
through the array. For each strip σ, we store three
pieces of information:

• the range rσ = (ybottom, ytop);

• the length lσ of the sweepline covered by rectangles
crossing rσ;

• the number cσ of rectangles spanning over rσ.

All this additional information about strips are stored in
a structure called TKleeV er1 using O(

√
n) space, sorted

by the strip ranges top-down. When a new rectangle is
added into or removed from TKleeV er1, we (i) recalcu-
late lσ of the at most two strips σ crossed by this new
rectangle; (ii) update cσ of the strips over which this
new rectangle spans; and (iii) add up the total covered
length from all strips. Step (i) takes O(

√
n log n) time

with O(
√

n) space, by doing a bottom-to-top scan over
all rectangles crossing this range. Step (ii) takes O(

√
n)

time with O(1) space, by checking each strip σ spanned
by the new rectangle and updating each cσ. Step (iii)
simply takes O(

√
n) time with O(1) space.

To maintain the priority queue, knowing the value of
current event, we find the next

√
n events by scanning

the input array once, and store them using O(
√

n) space
in a sorted list, called QKleeV er1. The amortized time
cost for each event is O(

√
n log n).

To perform the sweepline algorithm in section 2, we
use TKleeV er1 to replace T , and use QKleeV er1 to replace
Q. Because one update in TKleeV er1 takes O(

√
n log n)

time and there are O(n) events in total, the resulting al-
gorithm takes O(n3/2 log n) time with only O(

√
n) extra

space.

4 A Better Solution for Unit-Square Covering

As shown in section 2, we can modify the sweepline algo-
rithm for Klee’s problem to solve the unit-square cover-
ing problem. Recall the definition of depth. Here we are
interested in the maximum depth along the sweepline.
We provide an implicit segment tree TUnitSquare with
O(log2 n) space to store this information. We accom-
plish this by modifying Munro’s implicit search struc-
ture [11], like in other known space-efficient geometric
algorithms [3, 5, 6].

When we sweep over the squares, the intersection
of the sweepline with the squares forms a set of one-
dimensional intervals. We use a segment tree to store
these intervals. Unlike in a regular segment tree, we only
store the upper endpoint of each interval in the ascend-
ing order. Because all intervals have unit length, we can
search for the position of the lower endpoint whenever
we desire. As in known implicit data structures [11], we
can encode a constant number of values in a block of
size O(log n). We thus group data into blocks of size
O(log n), and build a binary search tree for blocks. For
any two blocks, the elements in one block are all smaller
or greater than elements in the other. Tree pointers
and the additional information for each block are en-
coded by permuting pairs of adjacent data. The range
rall of the root block in the tree is the whole range of
the sweepline. For each block in the tree, its rall is di-
vided into three sub-ranges: the range rabove above the
largest element in the block, the range rbelow below the
smallest element in that block, and the range rcovered

which is from the smallest element to the largest ele-

2



ment. We then recursively build left and right subtrees
for rabove and rbelow respectively. In each tree block b,
we record the number of intervals sabove spanning over
rabove and crossing rall, sbelow for rbelow, and scovered

for rcovered. Finally, we calculate the maximum depth
dall for intervals crossing rall. We get the maximum
depth of rabove from dall of the left child, similarly dbelow

from the right child. We can maintain dcovered whenever
an interval is inserted or removed, which will be shown
in detail in the next paragraph. We thus have dall =
max(sabove + dabove, scovered + dcovered, sbelow + dbelow).
Finally, we record the number of intervals starting in the
left subtree. This number helps us calculate dcovered.
All these additional information are stored implicitly
using Munro’s encoding technique [11].

When an interval is inserted, we first locate the po-
sition to insert the upper endpoint and query the lower
endpoint. On the tree path of insertion and query,
we update the sabove, scovered, sbelow, dabove, dcovered,
dbelow, and dall if necessary. In the block to insert the
upper endpoint, we need to recalculate dcovered. This
can be done by a scan through all upper endpoints in
rcovered, if we know the number of lower endpoints be-
tween any two adjacent upper endpoints. To calculate
this number, we query the structure to find the ranks of
highest and lowest lower endpoints between those two
points and take the difference of their ranks. Similarly,
we do the update in the block where the lower end-
point is located. Because one query takes O(log2 n)
time in the implicit structure [11] and we make O(log n)
queries during the scan, one update in TUnitSquare takes
O(log3 n) time. As in Munro’s implicit search structure,
TUnitSquare takes O(log2 n) extra space [11]. For dele-
tion, we do similar updates along the tree path, and
also update the tree blocks containing end points of the
interval.

To build the priority queue, we maintain all events in
two parts. We first sort all squares from left to right
according to their left sides in the input array. All left-
end events come from here. In each block in the implicit
search tree, we keep its next right-end event. That hap-
pens at the square with the leftmost right side. The
leftmost events among all these right-end events is the
next right-end event to process. The winner between
the next left-end event and the next right-event is the
next event to process. As in [6], we combine this prior-
ity queue QUnitSquare with TUnitSquare. Therefore, one
operation in the priority queue takes O(log2 n) time.

We use TUnitSquare and QUnitSquare to replace T and
Q in the algorithm from section 2. Since there are
O(n) events in total, this space-efficient solution takes
O(n log3 n) time with O(log2 n) extra space.

5 A Destructive Solution for Klee’s Problem

If all input coordinates are given in integers and we
can destroy the rectangles after the sweep, we can solve
the original Klee’s measure problem by maintaining an
implicit version of a segment tree TKleeV er2, for Klee’s
measure problem. Under this scenario, we now can af-
ford to store both the lower and the upper endpoints in
the tree as two separates points. This implicit segment
tree takes only O(log2 n) time for each operation in the
sweep, and it only needs O(log2 n) extra space in total.

When the sweepline sweeps over the rectangles, the
intersection of sweepline with rectangles forms a set of
intervals with arbitrary lengths. Like in the implicit
tree from section 4, we group data into blocks of size
O(log n), and use the block to divide the range corre-
sponding to a tree block into three sub-ranges. We also
store the number of spanning rectangles for each sub-
range. Unlike in section 4, we store both upper end-
points and lower endpoints in the segment tree. Instead
of encoding the maximum depth, we encode the length
covered by intervals crossing each range. In each tree
block, the points are stored in order in two separate
parts. One is for the upper endpoints. The other is for
the lower endpoints. We encode all additional informa-
tion. On the boundary of two parts, there is one pair
of element that we cannot permute. We call that bit a
failed bit. To identify a constant number of failed bits,
we use the technique shown in chapter 6 of [5].

To insert a rectangle (x1, x2, y1, y2), we first change
it to (x2, y1) and (x2, y2), then insert both of them into
TKleeV er2 as the two endpoints of an interval. Working
like on the implicit tree in section 4, we update infor-
mation along the tree path. In the tree block where
the endpoint is, we insert it to the proper part, and do
a merge for the two parts to calculate length covered
the rectangles crossing rcovered. Finally we encode the
covered length, and update the total covered length of
the sweepline. This implicit structure takes O(log2 n)
extra space. Finding the place to insert an endpoint
takes O(log2 n) time in implicit structure, and scan-
ning through a block to update the covered length takes
O(log n) time. Deletion of a segment is a similar pro-
cess. Given two endpoints of a segment, we traverse
down to the block, update information along the tree
path, and update the tree blocks where endpoints are
removed.

The priority queue QKleeV er2 is maintained similarly
to QUnitSquare. The only difference is that when a right-
end event occurs, there will be two blocks with exact
same event value, one coming from both the upper end-
point and the other from the lower. We then remove
the interval from TKleeV er2.

We use TKleeV er2 and QKleeV er2 to replace T and Q

in the algorithm from section 2. This takes O(n log2 n)
time with O(log2 n) extra space.

3



Remark: The approach in sections 3 and 5 can also han-
dle a variant of Klee’s problem that seeks the perimeter
of the union (instead of area). For each strip or range,
we simply need to record, in addition, the number of
connected components intersecting the sweepline.

6 Conclusions

Continuing previous papers [1, 2, 3, 4, 5, 6], we have
given more examples of geometric algorithms that use
little extra space. We hope that the space-efficient
sweep techniques used here may find further applica-
tions.

References

[1] Bose, P., Maheshwari, A., Morin, P., Mor-

rison, J., Smid, M., and Vahrenhold, J.

Space-efficient geometric divide-and-conquer algo-
rithms. In Proc. 20th European Workshop on Com-
putational Geometry (2004).

[2] Brönnimann, H., and Chan, T. M. Space-
efficient algorithms for computing the convex hull
of a simple polygonal line in linear time. In Proc.
Latin American Theoretical Informatics (2004),
vol. 2976 of Lect. Notes of Comp. Sci., pp. 162–
171.

[3] Brönnimann, H., Chan, T. M., and Chen,

E. Y. Towards in-place geometric algorithms and
data structures. In Proc. 20th Sympos. on Comput.
Geom. (2004), pp. 239–246.

[4] Brönnimann, H., Iacono, J., Katajainen, J.,

Morin, P., Morrison, J., and Toussaint,

G. Space-efficient planar convex hull algorithms.
In Proc. Latin American Theoretical Informatics
(2002), pp. 494–507.

[5] Chen, E. Y. Towards in-place algorithms in com-
putational geometry. Master’s thesis, University of
Waterloo, 2004.

[6] Chen, E. Y., and Chan, T. M. A space-efficient
algorithm for segment intersection. In Proc. 15th
Canad. Conf. Comput. Geom. (2003), pp. 68–71.

[7] Dijkstra, E. W., and van Gasteren, A. An
introduction to three algorithms for sorting in situ.
Information Processing Letters 15(3) (1982), 129–
134.

[8] Eppstein, D., and Erickson, J. Iterated nearest
neighbors and finding minimal polytopes. Discrete
& Computational Geometry 11 (1994), 321–350.

[9] Franceschini, G., and Grossi, R. Optimal
worst-case operations for implicit cache-oblivious
search trees. In Proc. 8th Workshop on Algo-
rithms and Data Structures (2003), vol. 2748 of
Lect. Notes of Comp. Sci.

[10] Lai, T. W., and Wood, D. Implicit selection.
In 1st Scandinavian Workshop on Algorithm The-
ory (1988), vol. 318 of Lect. Notes of Comp. Sci.,
Springer-Verlag, pp. 14–23.

[11] Munro, J. I. An implicit data structure sup-
porting insertion, deletion, and search in O(log2 n)
time. J. Comput. Sys. Sci. 33 (1986), 66–74.

[12] Overmars, M. H., and Yap, C.-K. New up-
per bounds in klee’s measure problem. SIAM J.
Comput. 20(6) (1991), 1034–1045.

[13] Preparata, F. P., and Shamos, M. I. Com-
putational Geometry: An Introduction. Springer-
Verlag, 1985.

[14] Symvonis, A. Optimal stable merging. The Com-
puter Journal 38(8) (1995), 681–690.

4


