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Abstract

Given a set of n points S ⊆ ℜ2, a specified point Z ∈ ℜ2,
it is shown that finding k minimal simplices from S,
each of which contains Z, can be done in O(n+k) time.
It is also shown that counting the number of all such
simplices can be done in O(n + n log (k/n + 1)) time,
when the number of simplices is k.

1 Introduction

Let S ⊆ ℜd be a given set of points in the d-dimensional
Euclidean space. Given a point Z ∈ ℜd, let us call a Z-
simplex any minimal subset X of points of S, the con-
vex hull of which contains Z. By Carathéodory theorem
(see [8]), the cardinality of any such set X is at most
d+1. Furthermore, we may assume without loss of gen-
erality that Z is the origin. It is a long-standing open
problem, known in other polynomially-equivalent forms
as the vertex enumeration or the convex hull problem,
to find an algorithm for enumerating all Z-simplices for
a given point set S ⊆ ℜd whose running time is poly-
nomial in |S|, d and the number of Z-simplices. See
[2, 3, 9].

Since the convex hull problem has been extensively
studied, assuming fixed dimension (see [7]), it is natural
to ask about the complexity of the enumeration of Z-
simplices under the same assumption. In this paper,
we consider the case d = 2 and present a linear-time
algorithm for enumerating such Z-simplices:

Theorem 1 Given a set of n points S ⊆ ℜ2, we can

find k Z-simplices from S in time O(n + k).

We also consider the problem of counting Z-simplices.
In [6], it was shown that, for a given set S of n points in
the plane, counting the number of triangles with corners
at S and containing a point Z can be done in O(n log n)
time. It was furthermore shown in [5] that simultane-
ously providing such counts for all points in S (each
point is considered once as Z) can be done in O(n2). On
the other hand, a lower bound of Ω(n log n) for counting
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the number of such triangles is also known (see [1]). It
is straightforward to verify that these bounds can also
be extended to the case of counting Z-simplices (with
the difference that such simplices can also be just line
segments, rather than triangles). We present an output-
sensitive algorithm for counting Z-simplices:

Theorem 2 Given a set of n points S ⊆ ℜ2, the

Z-simplices from S can be counted in time O(n +
n log (k/n + 1)), where k is the count of such simplices.

It remains interesting to investigate whether there is
a matching lower bound for the counting problem.

In the next section, we present a simple mapping from
our enumeration and counting problems to problems of
counting and enumerating certain subsequences of ze-
ros and ones. In Section 3, we show how to enumerate
such Z-simplices in linear time as stated by Theorem
1. Finally, an output-sensitive algorithm for counting
Z-simplices is given in Section 4.

2 From Z-simplices to sequences of zeros and ones

First, by projecting the points of S on the circumference
of the unit circle C(0, 1), we can assume without loss of
generality that the given set S is located on C(0, 1).

Second, let ℓ be an arbitrary diameter of C(0, 1), say
ℓ = ((−1, 0), (1, 0)). Then, the points of S can be rep-
resented by a sequence S ⊆ {0, 1}n of zeros and ones of
length n in the following way. We begin by replacing
each point p below ℓ by −p and mapping it toM(p) = 0.
The points p above ℓ remain unchanged and are mapped
to M(p) = 1. Now, we imagine that the resulting set
of points are sorted by the angle they make with the
x-axis. (Note however that the sequence S is not given
in sorted order, but associated with each element x ∈ S
is its angle a(x) that indicates its relative order in S.)
A similar mapping was used by [10].

Now, consider the maximal blocks of consecutive ze-
ros and consecutive ones within the sorted sequence
of S, when sorted by angle. We may assume with-
out loss of generality that if two points p1 and p2

satisfy M(p1) = 0, M(p2) = 1 and have the same
angle a(p1) = a(p2), then p1 appears in the sorted
sequence before p2, and consequently they must be-
long to two consecutive blocks. Let us denote by
B0

1 , B1
1 , B0

2 , B1
2 , . . . , B0

r , B1
r the maximal blocks from left

1



to right, where B0
j denotes a block of zeros, and B1

j de-

notes a block of ones. Let b0
j = |B0

j | and b1
j = |B1

j |, for
j ∈ {1, . . . , r}, denote the sizes of these blocks, where
b1
r ≥ 0, and bi

j > 0 for other values of i and j.
It is now easy to see that Z-simplices from S are in

one-to-one correspondence with:

(a) subsequences of S of length 2 of the form 01, and
the angles of the two points coincide (their blocks
must be consecutive in the sorted sequence),

(b) subsequences of the sorted sequence of S of
length 3 that have one of the two forms 010, 101
and not containing the subsequences in (a).

The subsequences in (a) are the 1-dimensional Z-
simplices representing two points forming a diameter,
while those in (b) are the 2-dimensional Z-simplices
representing triangles of points containing the center
in their interiors. Thus, our problem essentially re-
duces to finding such subsequences in a given sequence
S ⊆ {0, 1}n. We remark that the bound in Theorem 2
also applies to the problem of counting either the diam-
eters or the triangles containing the center, separately.
On the other hand, the bound in Theorem 1 only ap-
plies to the problem of enumerating triangles containing
the center, but not to that of enumerating diameters.

3 Enumerating Z-simplices

Given the sequence S ⊆ {0, 1}n corresponding to the
points of S, the first attempt for enumerating all Z-
simplices is to sort S by angle to get the maximal blocks
of consecutive zeros and consecutive ones. From such
a sorted sequence, it is straightforward to identify any
number k among the simplices represented by the sub-
sequences (a) and (b). (Note that k here need not be
the total number of Z-simplices.) The time required by
this procedure is O(n log n + k).

Two observations make the bound in Theorem 1 pos-
sible. The first is that we do not need to sort the points
(zeros and ones) within the blocks; instead we only need
to identify which points are in which blocks. The sec-
ond observation is that when k = o(n log n) the number
of such blocks r is small, and identifying the points in
each block can be done in O(n + k). The following two
lemmas are used to prove Theorem 1.

Lemma 3 Given a sequence S ⊆ {0, 1}n corresponding

to points in S, such that the number of the maximal

blocks of consecutive zeros in the sorted sequence of S
is r, the number of subsequences of S representing Z-

simplices is Ω(nr2) when r ≥ 3.

Proof. Let us show that the number of Z-simplices is
minimized when each block, but only one, contains ex-
actly one point, and such that all the points mapped

to each of two consecutive blocks B0
j , B1

j have the same
angle. We start with any sequence S that has r maximal
blocks of consecutive zeros, and transform it through a
sequence of steps, that do not increase the number of
Z-simplices, to another sequence with the same number
of blocks and with the claimed properties. Each such
step involves moving the set of points within one or two
blocks. We shall make use of the following preposition.

Proposition 4 Let N(x, y) = c + cxx + cyy + cxyxy
be a real-valued function in two variables x, y, where

c, cx, cy, cxy are real constants. Then,

(i) if x ≥ 1, y ≥ 1 and cxy ≥ 0, then either N(x + y −
1, 1) ≤ N(x, y) or N(1, x + y − 1) ≤ N(x, y),

(ii) if x ≥ 0, y ≥ 0, cx ≥ cy and cxy ≥ 0, then N(0, x+
y) ≤ N(x, y).

Proof. Let δ1 ≥ 0 and δ2 ≥ 0 and note that

N(x + δ1, y − δ1)−N(x, y) =

− δ1[cxy(δ1 + x− y) + cy − cx], (1)

N(x− δ2, y + δ2)−N(x, y) =

− δ2[cxy(δ2 + y − x) + cx − cy]. (2)

Assume cxy ≥ 0. Then, it is not possible that both
cxy(δ1+x−y)+cy−cx < 0 and cxy(δ2+y−x)+cx−cy <
0, for otherwise we get the contradiction cxy(δ1 + δ2) <
0. Thus if cxy(δ1+x−y)+cy−cx ≥ 0, we get by (1) that
N(x + δ1, y − δ1) ≤ N(x, y). Otherwise, we get by (2)
that N(x− δ2, y + δ2) ≤ N(x, y). Now, (i) follows from
the last statement by taking δ1 = y − 1 and δ2 = x− 1.
Also, (ii) follows from (2) by taking δ2 = x. �

Let µ0
j and µ1

j , for j ∈ {1, . . . , r}, be the count of
zeros and ones with the same angle from two consecutive
blocks of the sorted sequence of S. (Note that by our
assumption on the sorted sequence, S does not contain
a 1 followed by 0, for which the corresponding points
have the same angle.) Let us further denote by ηi

j the

difference bi
j − µi

j , for j ∈ {1, . . . , r} and i ∈ {0, 1}. For
a subsequence S ′ of zeros and ones, j, j′ ∈ {1, . . . , r},
and i, i′ ∈ {0, 1}, denote by NS′(Bi

j , B
i′

j′) the number of
occurrences of S ′ in the subsequence of S starting from
block Bi

j and ending by block Bi′

j′ .

Now, fix the number of points in each of the blocks.
Consider a block Bi

j , and assume without loss of gen-
erality that i = 0. The case for i = 1 is symmetric.
Then, the number of Z-simplices, including both the 1-
dimensional and 2-dimensional ones, can be written as
a function of η0

j and µ0
j as follows:
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N(η0
j , µ0

j ) = c + N01(B
0
1 , B1

j−1)(η
0
j + µ0

j )

+(µ0
j + η0

j )N10(B
1
j+1, B

0
r )

+η0
j (µ1

j + η1
j )N0(B

0
j+1, B

0
r ) + µ0

jη
1
j N0(B

0
j+1, B

0
r )

+N1(B
1
1 , B1

j−1)η
0
j (η1

j + µ1
j + N1(B

1
j+1, B

1
r ))

+N1(B
1
1 , B1

j−1)µ
0
j (η

1
j + N1(B

1
j+1, B

1
r )) + µ0

jµ
1
j , (3)

where the value of c does not depend on η0
j or µ0

j .

We now apply Proposition 4 with x ← η0
j and y ← µ0

j ,
where cxy = 0 and

cx − cy = µ1
j [N0(B

0
j+1, B

0
r ) + N1(B

1
1 , B1

j−1)− 1].

Since r ≥ 3, we have N0(B
0
j+1, B

0
r )+N1(B

1
1 , B1

j−1) > 1,

and thus Proposition 4 (ii) implies that setting η0
j ← 0

and µ0
j ← µ0

j + η0
j will not increase N(η0

j , µ0
j ). In other

words, by changing the angles of the points in block
B0

j so that they all make the same angle as that of the

first point in Block B1
j (if such a block exists), we do

not increase the total number of Z-simplices. Hence,
we may assume from now on that η0

j = 0 for all j =

1, . . . , r. Similarly, by setting i = 1, we get η1
j = 0 for

all j = 1, . . . , r. Thus, each two consecutive blocks B0
j ,

B1
j are associated with a single angle to which all the

points of the two blocks are mapped.
Let Bi

j and Bi′

j′ be two distinct blocks. As in (3), we

write the number of Z-simplices in terms of µi
j and µi′

j′

N(µi
j , µ

i′

j′) = c0 + c1µ
i
j + c2µ

i′

j′ + c3µ
i
jµ

i′

j′ ,

where c0, c1, c2 and c3 have non-negative values that de-
pend on neither µi

j nor µi′

j′ . Now, let us apply Propo-

sition 4 (i) with x ← µi
j and y ← µi′

j′ . It follows that

we can assume that either µi
j = 1 or µi′

j′ = 1. In other
words, there is a choice of indices, say i and j, such that
if we move all but one point of (the set of points cur-
rently mapped to) Bi

j until they are mapped to Bi′

j′ with
the same angle associated with the points currently in
Bi′

j′ , we do not increase the total number of Z-simplices.
This establishes our claim.

What remains is to count the number of Z-simplices
in such a case, which is a lower bound on the possible
number of Z-simplices. Let Bi

j be the block that has
n− 2r +1 points, and call this block the long block. We
consider the case when i = 1 and b1

r > 0; the other cases
are similar. First, consider the count of Z-simplices
that have one point from the points of this long block
B1

j . There are Θ(r2) possibilities for selecting two other
points from another two blocks. This follows from the
fact that after selecting two different indices out of the
possible r − 1 indices, other than j, the type (zeros or
ones) of the blocks to be selected are imposed. (For
example, if the two selected indices are smaller than

j, the type of the block with the smaller index must
be a 1 and the other block must be a 0. The other
cases are similar.) Since r ≥ 3, this accounts for a total
count of (n − 2r + 1)Θ(r2) for such Z-simplices. Next,
consider the Z-simplices that have none of the three
points from the long block. There are Θ(r3) possibilities
for selecting these points from three blocks other than
Bi

j . This is done by selecting three different indices out
of the possible r−1 indices, other than j. For each such
triple of indices, there is two possible choices, either 010
or 101. Also, there are the n− r possible 1-dimensional
Z-simplices. The total count of Z-simplices in this case
is, therefore, (n − 2r + 1)Θ(r2) + Θ(r3) + (n − r). If
r = Θ(n), the bound Θ(r3) and the fact that n ≥ 2r
imply that the number of such Z-simplices is Θ(nr2).
If r = o(n), the term (n − 2r + 1)Θ(r2) implies the
same bound of Θ(nr2). It follows that the number of Z-
simplices for any configuration of points is Ω(nr2). �

Lemma 5 Given a sequence S ⊆ {0, 1}n corresponding

to points in S, such that the number of the maximal

blocks of consecutive zeros in the sorted sequence of S is

r, the elements of each of these blocks can be identified

in time O(nr).

Proof. To identify which points in S are in which
blocks we proceed as follows. First, S is divided into a
subsequence of zeros and another subsequence of ones.
The point that has the smallest angle among the subse-
quence of ones is identified, and the subsequence of zeros
is partitioned into two subsequences with respect to the
angle of this identified one. The subsequence of zeros
that have a smaller angle is the first block of zeros. This
step is done in O(n). We proceed with the remaining
points among the subsequence of zeros by identifying
the point with the smallest angle. The subsequence of
ones is partitioned into two subsequences with respect
to the angle of this identified zero. The subsequence of
ones that have a smaller angle is the first block of ones.
This partitioning step is repeated alternatively between
zeros and ones, until all the blocks are identified. Since
the number of such blocks is r and each step of identi-
fying a block requires O(n), the lemma follows. �

We are now ready to complete the proof of Theorem
1. Given the sequence S ⊆ {0, 1}n corresponding to
the points of S, we apply the algorithm in Lemma 5
to identify the r blocks of consecutive zeros and con-
secutive ones in O(nr) time. Subsequently, finding all
the Z-simplices is straightforward and can be done in
O(n) time. If r ≤ 2 we spend O(n) time to find the
Z-simplices or to realize that there are none. If r ≥ 3,
using Lemma 3, the time spent by the algorithm is O(k),
where k is the number of the identified Z-simplices.

We can also apply the algorithm in Lemma 5 to find
a specified number of the Z-simplices. Given an integer
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k representing the required number of Z-simplices to be
found, decide a value for r ≥ 3 such that r = ck

n
for

some constant c . We apply the partitioning step of the
algorithm in Lemma 5 at most r times to identify the
first at most r blocks of consecutive zeros and consecu-
tive ones within S. By using an adequate value for the
constant c, Lemma 3 implies that we get the required k
Z-simplices, or otherwise all of them, in Θ(n + k).

4 Counting Z-simplices

As pointed out in Section 3, we do not need to sort
S. Instead, we only need to identify the consecutive
blocks of zeros and ones within the sorted sequence of
S (i.e. which points are in which blocks). Then, we
need to count the number of subsequences of the form
010 and 101 in such sequence. Such a count can be easily
obtained in O(n) time once the blocks of zeros and ones
are identified, as illustrated by the next lemma. See
[5, 6] for more details.

Lemma 6 Given a sequence of alternating consecutive

blocks of zeros and ones, the number of subsequences

of the form 010 and 101 in the given sequence can be

counted in O(n) time.

Proof. Let us, without loss of generality, count the
number of 010 subsequences. To do this, we scan the
given sequence from left to right, computing the sizes
of maximal blocks of consecutive zeros and consecutive
ones bi

j , for all j ∈ {1, . . . , r} and i ∈ {0, 1}. Now,
the number N010 of subsequences of 010 is given by the
following formula

N010 =
∑

1≤j1<j2<j3≤r

b0
j1

b1
j2

b0
j3

. (4)

Such a formula (4) can be computed in linear time. For
each j = 2, . . . , r − 1, incrementally compute the prefix
and postfix sums:

α0
1 = b0

1, α0
j = α0

j−1 + b0
j ,

β0
1 =

r
∑

h=2

b0
h, β0

j = β0
j−1 − b0

j .

It follows that N010 =
∑r−1

j=1
α0

jb
1
jβ

0
j . Similarly, the

numbers α1
j , β

1
j can be defined, for j = 1, . . . , r − 1,

from which N101 can be computed.
To account for the 1-dimensional Z-simplices, we need

to count the subsequences of consecutive zeros and ones
with the same angle. As defined above, let µ0

j and µ1
j ,

for j = 1, . . . , r, be the count of zeros and ones with the
same angle from two consecutive blocks of the sorted
sequence of S. (Note that by our assumption on the
sorted sequence, S does not contain a 1 followed by 0 for
which the corresponding points have the same angle.)

The count of 1-dimensional Z-simplices is, therefore,
∑r

j=1
µ0

jµ
1
j . Note that we still need to adjust the count

N010 of the 2-dimensional Z-simplices to account for
those simplices that contain 1-dimensional Z-simplices
as subsets. It is not difficult to see that the adjusted
count of N010 is

∑r−1

j=1
(α0

jb
1
jβ

0
j −µ0

jµ
1
jβ

0
j ). The adjusted

count of N101 can be calculated similarly. �

Applying the algorithm of Lemma 5, we have an
output-sensitive algorithm that counts Z-simplices in
O(nr). Since, using Lemma 3, r = O(

√

k/n), it follows
that such an algorithm can be used to count the number
of Z-simplices in O(n +

√
kn), where k is the output of

the algorithm. This motivates improving the algorithm,
and hence the bound, of Lemma 5. (The O(nr) bound
of Lemma 5 is enough for the enumeration algorithm.)

We use any of the algorithms in [4] to achieve the
next lemma, which implies an algorithm for counting
Z-simplices in O(n + n log (k/n + 1)).

Lemma 7 Given a sequence S ⊆ {0, 1}n corresponding

to points in S, such that the number of the maximal

blocks of consecutive zeros in the sorted sequence of S is

r, the elements of each of these blocks can be identified

in time O(n log r).
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