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Abstract

Given a set S of n points in the plane and another point
q, we give optimal O(nlogn) time, O(n) space algo-
rithms for finding the closest and farthest line segments
(lines) from ¢ among those spanned by the points in S.
We also give an O(nlogn) time, O(n) space algorithm
to find the k-th closest line and show how to report the
k closest lines in O(nlogn + k) time and O(n) space.

1 Introduction

Proximity problems are fundamental to computational
geometry and find many applications in related fields,
such as graph drawing, collision detection and robot
path planning, to name a few. In this paper we study
the following problem: Given a set S = {p1,p2,...,pn}
of n points in the plane and another point q, find the
closest (farthest) line segment from q among the set E
of O(n?) line segments defined by the points in S.

Our solutions for computing the closest and farthest
line segments are related to efficient solutions for the
simpler problem in which line segments are replaced by
lines, and we also briefly address this problem. Here,
we use L to denote the set of O(n?) lines spanned by S.

Without loss of generality, we assume ¢ is the origin
of the coordinate system and the points in SU{g¢} are in
general position, that is no three of them are collinear.

1.1 Related Work
The problems we study are related to the well known
slope selection and distance selection problems [4-7,9].
Computing the farthest or closest line of L from a
point q is closely related to counting the number of lines
in L that are intersected by a disk D centered at ¢q. Us-
ing a standard point-line duality transform and para-
metric search, with a parallel version of the Mount and
Netanyahu’s [11] algorithm for counting the number of
line intersections inside a bounded region, one can com-
pute the k-th closest line from ¢ in O(nlog2 n) time.
See also [2] for an O(nlog”n) time solution based on a
slightly different parametric search algorithm.

1.2 Results
We present the following results: (1) We give O(n logn)
time, O(n) space algorithms for computing the clos-
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est line segment (line) from a point ¢ among the line
segments (lines) spanned by S; (2) Similarly, we give
O(nlogn) time, O(n) space algorithms for computing
the farthest line segment (line) from ¢ among the line
segments (lines) spanned by S; (3) We present an algo-
rithm for computing the k-th closest line from ¢ that
runs in O(nlogn) time and O(n) space and briefly
describe how to report the k closest lines from ¢ in
O(nlogn+ k) time and O(n) space. All our algorithms
are optimal in the algebraic decision tree model.

Throughout the paper a line through two points a
and b is denoted as l;5. When a and b correspond to
some points p;, p; € S we use the notation /;;.

2 Closest Line Segment From Point

Let d(q, p;) denote the Euclidean distance from q to p;,
and let d(q,p;p;) denote the minimum Euclidean dis-
tance from ¢ to the line segment p;p;, pi,p; € S. Let
dmin = min{d(q, Fi77) | pi.pj € 5,pi # p;} be the dis
tance from ¢ to its closest line segment. Let pmin € S be
the closest point to ¢ and let C,,;, be the circle centered
at ¢ and of radius d(pmin,q). Then, dmin < d(Pmin, q)
and we can ignore all the line segments of £ that do not
intersect Cppin. Cmin can be computed in O(n) time.

Consider a point p; € S. Without loss of generality
(WLOG), assume g, is vertical and p; is above ¢. The
line {y,, separates the points in S\ {p;} in two subsets.
Let S} be the set of points to the left of [,,,, and let S?
be the set of points to the right of [,,,. Consider the
points in S} (for the points in S? the analysis is similar).
Let C'H(S}) denote the convex hull of S}, and consider
finding the closest line segment from ¢ among those in
the set E;, defined by p; and another point in S}.

Lemma 1 If a line segment P;ipx, px € S}, intersects
Crmin and all points in S} \ {px} are above l;x then P;px
1s the closest line segment from q among those in Fj;.

Proof: Since p;pg intersects Cpin, d(q,PiPk) < dmin.
Consider a line segment p;p;, (p; € Si,p; # pi,px). If
Pip; N Cin = 0, then d(q, Pip;) > dmin > d(q,Pipx). If
pip; intersects Ciin let & be the orthogonal projection
point of ¢ to B;p;, that is |7Z| = d(g,Pip;). Then, gz
must intersect P;pr at some point y, and d(g,pip;) =
d(q,z) > d(q,y) > d(q,PipP). Since py cannot be inside
Comin (there are no points of S inside Cyip) it follows
PiPk 1s the closest line segment of E; from g¢. a

Lemma 2 (1) If CH(S}) does not intersect Cppip then
etther p; 1s not an endpoint of the closest line segment
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Figure 1: (a) p;pg intersects Cpipn and (b) pipg does not
intersect Chyip -

of E from q or the closest line segment of E; from q
is tangent to CH(S}). (2) If CH(S}) intersects with
Chin, let e; be the closest edge to q among those edges
of CH(S}) that have nonempty intersection with Cyip .
Then the only possible candidates for the closest line
segment from q are e; and the tangent line segments

from p; to CH(S}).

Proof. For case (1), let the tangent line segments from
pi to CH(S}) have the other endpoints at p, and ps,
respectively, and assume that pp is above the line ;,. If
the line segment p;p, does not intersect with C)y,;,, then,
since dmin < d(Pmin, q), the closest line segment of £
from ¢ is not in E;. If the line segment p;p, intersects
Cimin then, according to Lemma 1, p;p, is the closest
line segment of E; to ¢, since the endpoints of the other
line segments in E; are above the line /;,.

For part (2), let pepg be the edge e; (see Fig. 1). Let
the tangent line segments from p; to C'H(S}) have the
other endpoints at p, and pp, respectively, and assume
that pp is above the line [;,. If p;p, intersects Cp,ip then
all the other line segments in E; have the endpoint that
is different from p; above the line /;, and according to
Lemma 1 p;p, is the closest line segment of E; from ¢
(see Fig. 1(a)). If p;pg does not intersect with Cpin
then all the points of (S} U {pi}) \ {pc,pa} are above
the line [.4. It results pepg is closer to ¢ than any line
segment in F; and thus we can ignore Fj. d

Then, it follows that the closest line segment p;p; of
E from q is tangent to C H(S}) or CH(S?).

Our algorithm to find the closest line segment of
FE from ¢ is as follows. First, find the closest point
Pmin € S from q, let dpmin = d(¢, Pmin) and set the clos-
est line segment to any line segment of E that has pyin
as one endpoint. Next, sort the points of S around ¢ ac-
cording to the slopes of the lines lg,,, ¢ = 1,2,...,n. Let
S correspond to this sorted order. Then, for =1 to n,
construct (a data structure for) CH(S}) and CH(S?),
find the four tangent line segments from p; to CH(S})
and C'H (S?), compute the distance from q to these line
segments, and update d,,;, and the closest line segment
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Figure 2: Two cases for the closest line segment p;p;.

from q if needed. From the properties above we know
that the closest line segment of £ from ¢ is one of the
tangent line segments from some p; € S to CH(S})
or C'H(S?). The algorithm checks all these cases and
thus it outputs the closest line segment of E from gq.
In the for loop, once CH(S}) and C'H(S?) are avail-
able, each update for C H(S}) and C'H(S?) can be done
in O(logn) time, using the dynamic convex hull data
structure in [3]. The tangent line segments from p; to
CH(S}) and CH(S?) can also be computed in O(logn)
time [3]. Then, the for loop takes O(nlogn) time.
Adding up, the time complexity is O(nlogn) and the
space is O(n). The optimality follows from the lower
bound proof for lines in [2].

Theorem 3 Given a set S of n points in the plane and
another point q, the closest line segment from q among
the line segments defined by the points in S can be found
in O(nlogn) time and O(n) space, which is optimal.

Our algorithm for finding the closest line from ¢
spanned by S is simpler and we only sketch the main
idea below. Two lines in L define two double-wedges
at their intersection point. A double-wedge is acute if
the angle between its defining lines is no greater than
/2. Let p; and p; be the points defining the closest
line to ¢. It is easy to see that the acute double-wedge
defined by [;; and [,,, does not contain any point of
S. The acute double-wedge at p; separates the points
of S\ {p;} into two subsets, such that the line {;; is
tangent to the convex hull of one of the two subsets.
Then, we can use an algorithm similar to that for the
closest line segment and compute the closest line from
q optimally, in O(nlogn) time and O(n) space.

3 Farthest Line Segment From Point

Let p; € S and WLOG assume p; is vertically above q.
The line {,,, separates S\ {p;} into two subsets. Let
S} be the set of points to the left of I,,,, and let S?
be the set of points to the right of [,,,. Consider the
points in S} (for the points in S? the analysis is similar).
Let C'H(S}) denote the convex hull of S}, and consider
finding the farthest line segment from ¢ among those in
the set E;, defined by p; and another point in S}. Let
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Figure 3: papp has empty intersection with Cj.
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Figure 4: pgapp intersects C; at one point.

l;‘lq be the line orthogonal to {,,4 at p;. Thelines{,,, and
l;‘lq divide the plane into four regions: upper left, upper
right, bottom left, and bottom right denoted as U L;,
UR;, BL;, and BR;, respectively. Let C; be the circle
having the line segment p;q as a diameter. Clearly, the
farthest line segment from ¢ having p; as an endpoint
has nonempty intersection with the closed disk bounded
by C;. Note also that if there is a point p, € S} with
pq in UL; then p;pg is a farthest line segment of Ej
from ¢q. Then, it suffices to consider the point p, € UL;
with p;p, tangent to C H(S}). This implies that if there
is a point of S} in UL; then we only need to consider
the tangent line segments from ¢q to CH(S}). Then, we
focus on the case when CH(S}) C BL;.

Lemma 4 For a segment Paps, Pa,Pp € BL;, and any
point v € Papy, d(q,pi7) < maz{d(q,PiPa). d(q,PiPs)}-

Proof. There are four cases. (1) papy N C; = 0. With-
out loss of generality, assume the y-coordinate of p,
is no smaller than the y-coordinate of pp. There are
two sub-cases: (a) p, is above l;; (Fig. 3 (a)). In this
case, when r moves from pp to pg on pgpp, the inter-
section of p;7 with the orthogonal line from ¢ to p;7
moves towards p; on the semicircle of C; that is in-
cluded in BL;. Then d(g,p;7) monotonically increases
when r moves from py to p, and thus d(q,Pips) <
d(q,7i7) < d(q,Pipp). (b) The point p, is below the
line ;5 (Fig. 3 (b)). By an argument similar to the one
above, d(q,P;7) monotonically decreases when r moves
from py to pa. Then, d(q, pipy) < d(gq, piT) < d(q, FiPa)-
(2) The line segment Pgpp is inside C;. Then, for
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Figure 5: papp intersects C; at two points.

any point r € Paps, d(q,pi7) = d(q,7). Since 7 is
within the triangle defined by ¢, p, and p, we have
that d(q,pir) = d(q,r) < max{d(q, pa),d(q,pe)} =
max{d(q,PiPa),d(q,Pipv)}. (3) The line segment Pgpp
intersects C; at a point f and one of p,, pp is outside C;
and the other one is inside C;. Without loss of general-
ity, assume p, is inside C; and py is outside C;. There
are three sub-cases: (a) The y-coordinate of p, is no
smaller than the y-coordinate of p; and p, is above the
line l;5. Then, for any point r on Pgpp, P;7 has nonempty
intersection with gpg. Since d(q,PiPa) = d(¢,Ppaq) it Te-
sults that d(q,7;7) < d(¢q,Pipa). (b) The y-coordinate
of p, 1s no smaller than the y-coordinate of pp and p,
is below the line l;; (Fig. 4 (a)). Then, d(q,pif) <
d(g,pir) < d(q,PiPy) when r € ppf, and d(q,pi7) <
max{d(q,Pipa), d(q,Pips)} when r € fp,, which im-
plies that d(¢,pi7) < max{d(q,PiPa),d(q, Pips)} for
any 7 € Pgpp. (c¢) The y-coordinate of py is larger
than the y-coordinate of p, (Fig. 4 (b)). Note that
pq must be below the line l;;. Using similar argu-
ments as above for r € ppf and r € fp, we have
d(g, piT) < max{d(q,PiPa), d(q,Pipy)} for any r € Papy.
(4) The line segment pgpp intersects C; in two points
f and g, and thus p, and p, are outside C; (Fig. 5).
Without loss of generality, assume the y-coordinate of
pa 18 no smaller than the y-coordinate of pp. In this
case, d(q,pipy) < d(q,pi7) < d(q,pig) when r € Peg,
d(¢,pig) < d(g,pi7) < d(q,pif) when r € gf, and
d(g,pif) < d(q,pi7) < d(q,PiPa) when r € fp,, which
implies that d(q, p;7) < d(q,PiPq) for any r € Dgpp. O

Lemma 5 If all points of S} are in BL; then for any
point p, € S} that is inside C H(S}) there is some vertex
py of CH(S}) such that d(q,pipa) < d(q,PiPs)-

From Lemma 5 it follows that we only need to con-
sider the vertices of CH(S}). Let p, and p, be the
two vertices of CH(S}) such that the lines l;, and
are tangent to CH(S}). WLOG, assume p, is above ;.
The line Iy, separates C'H (S}) into an upper convex hull
UCH(S}), which is inside the triangle defined by p;, pa,
and ps, and a lower convex hull LC'H (S}), which is out-
side that triangle. Lemma 5 implies that if CH(S}) C
BL; then for any vertex p. of LOH(S}) there is some



vertex pg of UCH(S}) such that d(q,pipe) < d(q, Pipd)-
Then, we can ignore the vertices of LC'H(S}).

Lemma 6 Let CH(S}) C BL;, and let p; be a vertex
of UCH(S}) such that p;p; is the farthest line segment
of E; from q. Then, either the line l;; is tangent to
C’H(S]Z) or F; can be ignored since it does not contain
the farthest line segment of E from q.

Our algorithm for finding the farthest line segment
is similar to the algorithm for finding the closest line
segment and we leave it out due to space constraints.

Theorem 7 Given a set S of n points in the plane and
another point q, the farthest line segment from q among
the O(n?) line segments defined by S can be found in
O(nlogn) time and O(n) space, which is optimal.

For the farthest line problem we note that the disk
centered at g and tangent to the farthest line of L from
q intersects all other lines in L. For a point p; € S
let lzJﬁq be the line through p; and orthogonal to the line
lp,q, defined by p; and ¢. The line lzJﬁq partitions S\ {p;}
into two subsets S} and S?. Observing that the point
p; € S\ {pi} defining the farthest line from ¢ through
p; 1s one of the four tangency points corresponding to
the tangents from p; to CH(S}) and CH(S?), we have:

Theorem 8 Given a set S of n points in the plane and
another point ¢ € S, the farthest line from q defined
by two points in S can be found in O(nlogn) time and
O(n) space, which is optimal.

4 Computing the k-th Closest Line from a Point

In this section we briefly discuss how to find the k-th
closest line from ¢ in O(nlogn) time and O(n) space.
This is optimal in the algebraic decision tree model by
the lower bounds on the closest and farthest line prob-
lems. Our algorithm is randomized and the running
time bound holds with high probability.

The algorithm employs parametric search for the dis-
tance di from ¢ to the k-th closest line of L. The
parametric search maintains a half-open interval I =
[dmin, dmax) that contains di. Let Ly be the set of lines
of L whose distance from q lies in this interval. We also
maintain the number ny;, of lines of L whose distance
from ¢ is less than dpyn. Thus, the problem reduces
to finding the (k — nmin)-th closest line of L. Initially
I = [0,00) and npyin = 0. The algorithm contracts this
interval through a sequence of stages. We can show that
the expected number of stages is a constant.

Consider the problem in its dual setting, by mapping
the n points of S into a planar arrangement of n lines.
The set of lines of L that lie within a given distance from
q are in 1-1 correspondence with the set of arrange-
ment vertices that lie within a region bounded by two
branches of a hyperbola [2]. Mount and Netanyahu [11]
showed that by an analysis of the order of these O(n)
intersection points, it is possible in O(nlogn) time to

count, sample, and enumerate the arrangement vertices
lying in this region. Then, using a probabilistic argu-
ment from [10] we obtain the claimed bounds.

We can use this result to obtain an algorithm that
reports the k closest lines from ¢q. Let D be the disk
centered at ¢ and tangent to the k-th closest line. Then,
only the k — 1 closest lines from ¢ have nonempty inter-
section with the interior of D. In the dual plane, using
Balaban’s algorithm [1] we can report the intersections
of the segments between the corresponding branches of
the hyperbola in O(nlogn + k) time and O(n) space.
Theorem 9 The k closest lines from a point q, among
the lines spanned by a set S of n points in the plane,
can be found in O(nlogn + k) time and O(n) space.

5 Conclusion

In this paper we presented optimal O(nlogn) time,
O(n) space algorithms for computing the closest and far-
thest line segments (lines) from a point ¢, among those
spanned by a set S of n points in the plane. We also
presented optimal solutions for finding the k-th closest
line to ¢ and for reporting the & closest lines to ¢. Our
techniques can also be applied to other problems, such
as finding the minimum and maximum area triangles

defined by ¢ with S'\ q.
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