
The min-# problem, a hybrid error criterion for near-linear time performance

Lilian Buzer∗†

Abstract

For a given polygonal chain and a family of tolerance
regions, we study the min-# problem, which consists
in finding an approximate and ordered subchain with a
minimum number of vertices. Our algorithm computes
an approximation that retains the shape of the original
chain. Moreover, our method reaches a near-linear time
complexity and its implementation is based on classical
functions. To our knowledge, this is the first algorithm
providing all these advantages.

1 Introduction

A polygonal chain, or a path P in the plane, with
n vertices, is defined as an ordered list of vertices
(p1, p2, . . . , pn) such that any two consecutive vertices
pi, pi+1 are connected by a line segment. The polygonal

chain approximation problem consists in approximating
a polygonal chain P by another one whose vertices must
be an ordered subset of the vertices of P . This problem
arises in many applications like including geographic in-
formation systems (GIS), cartography, computer graph-
ics and data compression. Two main problems have
emerged. The min-ε problem consists in finding an ap-
proximation with at most k vertices and with the small-
est approximation error. In this paper, we focus on the
second problem, namely the min-# problem: given a
polygonal chain and a family of tolerance regions, find
an approximate chain with a minimum number of ver-
tices. We use the notation Sj

i to denote the subchain
(pi, . . . , pj) and the notation p.x to denote the abscissa
of the vertex p.

2 Approximation criteria

The algorithm we have designed retains the shape of the
initial chain, builds an approximation with a minimum
number of segments and reaches a near-linear time com-
plexity. We present all the existing approximation cri-
teria and we show that none of them, as far as we know,
provides these three advantages at the same time.

∗A2SI Laboratory, ESIEE, 2 bd Blaise Pascal, Cité Descartes,
BP 99, 93162 Noisy-Le-Grand Cedex, France, buzerl@esiee.fr

†Unité Mixte CNRS-UMLV-ESIEE, UMR 8049

2.1 History

The min-# problem has been studied extensively during
the last two decades. Imai and Iri in [12] introduced a
unified approach that has since been employed by most
of the algorithms devoted to this problem. They formu-
lated the problem in terms of graph theory. Let ε > 0
denote a given error bound and let TRε(uv) denote the
tolerance region associated with the segment uv. They
defined an unweighted graph Gε(P ) = (V, Eε), where
V = {p1, . . . , pn} and Eε = { pipj | (pi, pi+1, . . . , pj) ⊂
TRε(pipj)}. By computing the shortest path in Gε (an
unweighted directed acyclic graph), the min-# prob-
lem is solved in time linear in the number of Gε edges.
We now describe the different tolerance regions associ-
ated with two vertices pi and pj : • Segment distance,
the maximum distance from the segment pipj • Infinite

beam or parallel-strip, the maximum distance from the
line pipj • Minimum height, a rectangle such that pi and
pj lie on two opposite sides which are orthogonal to the
segment pipj and whose length is less than ε • Minimum

width, a rectangle whose width is less than ε and which
contains the segment pipj . The segment distance crite-
rion under the L∞ metric is called the uniform measure

criterion and that under the L2 metric the tolerance

zone criterion.

Tolerance zone

Segment distance criteria

Minimum height Minimum widthParallel-strip

Uniform measure
L∞ metric

pi

pjε ε

pi

pj

L2 metric

pj

pi

pi

pj

ε

ε

pj

pi ε

pi

pjε

L1 Metric

Figure 1: The different error criteria.

2.2 Previous work

The minimum height, the segment distance and the par-
allel strip criteria [12, 17, 15, 10, 5, 6] under various

1



metrics lead at least to quadratic algorithms where the
bottleneck is the construction of Gε. Using a graph com-
pression technique, Agarwal and Varadarajan [2] pre-

sented an f(γ).O(n
4

3
+γ) time method for the uniform

measure criterion and the segment distance criterion un-
der the L1 metric. One of the oldest and most popular
algorithms is the Douglas-Peucker heuristic [9]. Her-
shberger and Snoeyink [11] showed that this algorithm
can be implemented in O(n log∗ n) time. This method
achieves efficiency but fails to build an approximation
with a minimum number of vertices. Other recent ap-
proaches, a breadth-first traversal of the graph [7], a
query-based technique [8] (for the infinite beam crite-
rion) and an error measure based on the Fréchet dis-
tance [1] achieve near-linear time performance but only
under certain assumptions. The minimum width crite-
rion allows a greedy method to be used and thus Imai
and Iri in [12] proposed an O(n log n) time algorithm.
Nevertheless, they describe the approximations under
this criterion as peculiar (under the minimum height
criterion as well). The intrinsic properties of an error
criterion influence the behavior of the algorithm. Cer-
tain properties may be excessive and may increase the
number of points unnecessarily. Conversely, a relaxed
criterion may produce too coarse a simplification. In
the following section, we tackle this question in order to
set up a criterion which is an appropriate trade-off.

2.3 Problems inherent to the error criteria

The main problem is to control the approximation in
the neighborhood of pi and pj (see Fig. 1). By allowing
the subchain to go beyond the two endpoints, we may
lose pieces of the original chain (see Fig. 2.a). Thus,
neither the parallel strip nor the minimum width cri-
teria can be used to retain the shape of the original
chain. Moreover, even though the uniform measure and
the minimum height criteria prevent the subchain from
locally passing beyond one endpoint, they sometimes
fail to simplify in certain configurations (a zig-zag in a
bend, see Fig. 2.b) and they produce a useless segment.
Consequently, only the segment distance criterion with
L1 and L2 metrics can be used to avoid these inconsis-
tencies.

(b)

unable to

(a)
simplify this chain this tolerance region

this vertex prevents

ε

Figure 2: The different inconsistencies.

2.4 Introducing a hybrid criterion

Our hybrid criterion is a development of the previous
ones. The tolerance areas we use correspond to par-
ticular parallelograms divided into two families. The
first and second families correspond to parallelograms
which have respectively two vertical and horizontal
sides, called the borders, of length ε and such that the
slope of the two other sides lies between [−π

2 , +π
2 ], re-

spectively, relative to the horizontal and vertical axes
(Fig. 3). Moreover, each of the two endpoints pi and pj

must lie within distance ε/2 of a different border.

right border

α(i, j)

ε

pj

pi

ε/2

ε/2

Figure 3: The hybrid criterion.

3 Algorithm design

3.1 The guide

To obtain a subquadratric complexity, we must bypass
the construction of Gε. In [2], a graph compression tech-

nique is used to achieve an O(n
4

3
+γ) time complexity.

Nevertheless, to obtain a near-linear time complexity,
we must combine the shortest path computation with
the graph construction at the same time. Therefore, we
process only useful edges. Thus in [7, 8], a breadth first
traversal (BFT) achieves better performance under cer-
tain assumptions. Nevertheless, using a BFT approach
we may visit the same node in Gε several times. To
avoid this problem, we set up a Guide which can deter-
mine the next unvisited node from a given node. Thus,
the following assertion holds:

Theorem 1 During the BFT, if a Guide detects the

next unvisited node in Gε in θ(n) time, then the min-#

problem can be solved in O(n.θ(n)) time.

3.2 The monotonicity tree

We now focus on a subproblem where we develop a con-
venient data structure that we reuse in our algorithm.
Consider a subchain Sj

i and the configuration displayed
in Figure 3. The rightmost vertex with maximum in-
dex is denoted α(i, j). Finding this special point for
each couple (i, j) is an expensive operation because the
number of couples can be quadratic. Let us consider
the reverse problem. For a given index i, we prefer to
detect the candidate points α(i, .) and then find the cor-
responding vertices pj . We define the candidate points

of a vertex pi to be the points pk such that k > i and

2



that pk is the rightmost point of the subchain Sj
i . A

natural order of these candidate points emerges if we
sort them by increasing indices or similarly by increas-
ing abscissae. Thus, we can create a rooted tree where
each node is associated with a vertex pi. The parent-
child relationship in this tree is as follows: the node
linked to the vertex pk is the parent of the node linked
to the vertex pi when pk is the candidate point of pi

with the smallest abscissa. Therefore, when we succes-
sively traverse the ascendants of the node linked to the
vertex pi, we obtain all the existing points α(i, .) by in-
creasing abscissa (see Fig. 4). We call such a tree the
increasing abscissae tree (IAT). It can be preprocessed
in linear time after a sorting step. Similarly, we define
the decreasing abscissae tree (DAT).

1

5

7
8

2

6

4

y

1

4

2

3

6

7

5

(b)(a)

x

8

1

2

3

4

5

6

7

8

x

i

3

Figure 4: Construction of the increasing abscissae tree.

3.3 Sketching the Guide

With respect to the associated tolerance areas, four
different cases appear depending on the family of the
parallelograms and on the direction of traversal, for
example from right to left or left to right. During the
BFT in Gε, we process each case from the current
vertex separately and then combine the results. This
approach is equivalent to working with four different
Guides. For convenience, only the configuration
presented in Fig. 3 is considered. From a vertex pi we
want the Guide to find the next vertices pj such that:

1- pj is unvisited

2- Sj
i is included in a strip with vertical section

less than ε and with a valid slope

3- ∀p ∈ Sj
i , p.x ≥ pi.x − ε/2

4- ∀p ∈ Sj
i , p.x ≤ pj.x + ε/2

Checking Condition 3. Let pβi
denote the first

vertex in the list pi that verifies pβi
.x < pi.x− ε/2. For

any k, i < k < βi, pk satisfies the condition and for any
k ≥ βi, pk is not valid. So we preprocess the βi values
in O(n log n) time by a depth first traversal of the DAT
coupled to binary searches in the stack. Therefore, the
condition is checked in constant time.

Checking Condition 2. Dynamic width and dy-

namic convex hull are active fields in computational ge-
ometry [3, 4]. Rather than incorporating a complicated
data structure which enables width computation, we
prefer to use the vertical section that leads to a simple
and efficient implementation. Nevertheless, if we reuse
results from [3] and adapt our method, we obtain an al-
gorithm for the width that works in O(n1+γ) time, with
γ an arbitrary small constant. The sectional length, SL,
of a convex hull can be computed in logarithmic time
[13]. First, we check this query for a given convex hull:
we see if the SL is less than ε and we verify the angle of
the antipodal pair that defines the SL. If this angle is
outside our interval [−π

2 , π
2 ], we look for the first edge

whose slope is in this interval in O(log n) time. The
remaining computation of the sectional length of the
covering strip associated with this edge can be done in
O(log n) time. Thus, for a given convex hull, we check
the second condition in logarithmic time.

Notice that when Sj
i is invalid regarding the second

condition, Sk
i is also invalid for any k > j. Thus we

can define Ωi to be the last index j for which Sj
i implies

a positive answer. With a simple polygonal chain as
input, we can preprocess this array in O(n log n) time
using online convex hull algorithm [16]. Notice that Ωi

is a non-decreasing function and that for any k and j,
k ≤ j ≤ Ωk, we have Ωk ≤ Ωj ≤ ΩΩk

. We first compute
the Ωi(1) = Ω(Ωi−1(1)) values using incremental hulls
only. Then for each point pk = pΩi(1), we manage one
decremental hull from pΩk

to pk and one incremental
hull from pΩk

to pΩΩk
. One property of a simple polygo-

nal chain is that the convex hulls of two consecutive sub-
paths can only have two intersection points. Thus, the
full hull can be processed in logarithmic time by merg-
ing these two hulls. To compute Ωj>k, we successively
add points one by one to the incremental hull until the
full hull is no longer valid. We then remove pj from the
decremental hull and proceed with the Ωj+1<Ωk

com-
putation.

Checking Condition 1. We look for the first un-
visited ascendant of pi in the IAT. For this, the parent-
child relationship is stored separately in an array. We
use a union-find data structure so that the algorithm re-
members the visited nodes and finds the first unvisited
ancestor of a given node. To mark a node n as visited,
we unite it with its parent: Union(n, Parent(n)). The
representative of the set containing Parent(n) is kept
for the new set. So, in order to find the first unvisited
ascendant of pi, we simply perform a Find(Parent(pi))
operation. A union by rank is sufficient to achieve an
O(m log n) time complexity, where m denotes the num-
ber of queries.

Checking Condition 4. As stated, each ascendant
pl of pi in the IAT represents the rightmost vertex of
the subchain Sl

i, by definition, such points always verify
the fourth query. Therefore, until we reach the limit

3



given by pmin(βi,Ωi), each unvisited ascendant of pi rep-
resents an answer of the Guide. Nevertheless (see Fig.
5), the valid points, called return points, that do not lie
on the right border remain unprocessed. For a return
point pj, consider the rightmost point pl of the subchain

Sj
i . It is actually a candidate point of pi. Thus, instead

of checking if all the vertices of the subchain Sj
i verify

the fourth condition, we look for the points pj within
distance ε/2 of the candidate points pl. Given the defini-
tion of the candidate points, no vertex with an index less
than the index of Parent(pl) can lie on the right side of
pl. So all the valid vertices pj verify the next condition:
(j, pj .x) ∈ [l, index of parentIDL(pl)[×[pl.x − ε/2, +∞[.
Using a priority search tree [14], we obtain our answers
in O(log n+ q) where q denotes the number of retrieved
vertices. Then, the marked vertices are withdrawn from
the tree. Each deletion has a logarithmic cost.

Missed markings When reaching the last candidate
point, the bound pmin(βi,Ωi) may prevent some return
vertices from being selected (see Fig. 5). We cannot
mark such a candidate point as visited, as otherwise
we would have no means to find its unprocessed return
points later. Fortunately, for each node traversed during
the BFT, it is only possible to miss one marking. So,
the number of times we process this configuration is
bounded by the number of points, and so this produces
a linear number of useless operations.

9
8

10

11

1

4
3

65

2

7

valid return vertex

min(βi, Ωi)

return p10 not reachable

p7 is a missed marking

ε/2

three marked nodes

all returns visited

one marked node

no return present

Figure 5: Nodes visited by the Guide.

4 Conclusion

Our algorithm computes an approximation with a min-
imum number of vertices and our hybrid criterion guar-
antees that the approximate subchain retains the shape
of the original chain. This is the first near-linear time
algorithm that ensures this optimality and this prop-
erty. The overall time complexity of our method is
O(n log n). Its implementation only requires classical
data structures: priority search trees, arrays and union
by rank. It is based on academic algorithms like the
online Melkman convex hull algorithm, tangent finding
and sectional length computation.

References

[1] P. K. Agarwal, S. Har-Peled, N. Mustafa, Y. Wang.
Near-linear time approximation algorithms for curve
simplification In Algorithmica, to appear.

[2] P. K. Agarwal, K. R. Varadarajan. Efficient Algorithms
for Approximating Polygonal Chains. In Discrete Com-

put. Geom., pp. 273-291, 23, 2000.

[3] G. S. Brodal, R. Jacob. Dynamic planar convex hull. In
Proc. 43rd Annual Symp. on Foundations of Computer

Science pp.617-626, 25, 2002.

[4] T. M. Chan. A Fully Dynamic Algorithm for Planar
Width. In Discrete & Computational Geometry, pp:17-
24, 30(1), 2003.

[5] W. S. Chan, F. Chin. Approximation of polygonal
curves with minimum number of line segments or min-
imum error. In Internat. J. Comput. Geom. Appl., pp.
59-77, 6(1), 1996.

[6] D.Z. Chen, O. Daescu. Space-efficient algorithms for ap-
proximating polygonal curves in two dimensional space.
In Int. J. Comput. Geom. Appl. pp. 95-112, 13(2), 2003.

[7] O. Daescu. New results on path approximation. In
Algorithmica pp. 131-143, 38(2), 2003.

[8] O. Daescu, N. Mi. Polygonal chain approximation: a
query based approach. In Computational Geometry,

theory and Appllications, pp. 41-58, 30(1), 2005.

[9] D.H. Douglas, T.K. Peucker. Algorithms for the re-
duction of the number of points required to represent a
digitized line or its caricature. In Canadian Cartogra-

pher, pp. 112-122, 10(2), 1973.

[10] D. Eu, G.T. Toussaint. On approximation polygonal
curves in two and three dimensions. In Graphical Models

and Image Processing, pp.231-246, 56(3), 1994.

[11] J. Hersberger, J. Snoeyink. Cartographic line simplifi-
cation and polygon csg formulae in O(n log* n) time.
In Proc. 5th International Workshop on Algorithms and

Data Structures pp. 93-103, 1997.

[12] H. Imai and M. Iri. Polygonal approximations of a
curve-formulations and algorithms. In G.T. Toussaint,

editor, Computational Morphology pp. 71-86, North-
Holland, Amsterdam, 1988.

[13] D. Kirpatrick and J. Snoeyink. Tentative prune-and-
search for computing fixed-points with applications to
geometric computation. In Fundamenta Informaticae,
pp:353-370, 22(4), 1995.

[14] E. M. McCreight. Priority search tress. In SIAM J.

Comput., pp:257-276, 14(1), 1985.

[15] A. Melkman, J. O’Rourke. On polygonal chain approxi-
mation. In Computational Morphology, North-Holland,
pp. 87-95, Amsterdam, 1988.

[16] A.A. Melkman. On-line construction of the convex hull
of a simple polyline. In Information Processing Letters,
pp:11-12, 25, 1987.

[17] G.T. Toussaint. On the complexity of approximating
polygonal curves in the plane. In Proc. IASTED, Inter.

Symp. on Robotics and Automation, pp. 59-62, 1985.

4


