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Abstract
The problem of computing the diameter of point-sets
presents itself in a variety of fields like databases, data-
mining and vision. A näıve algorithm takes time O(n2)
which is impractical for the large point-sets encountered
in these fields, and hence there is a need for faster algo-
rithms, albeit approximate. We present new ideas to effi-
ciently approximate the diameter of a point-set in low di-
mensions. The new algorithm has a worst-case running time
of O(n +

√
nε

1
εd/2 ) - wherenε ≤ 1

εd−1 and is faster for
soft inputs where the number of potential diametrical pairs is
small.

1 Definition
Given a set S of n-points in d-dimensional space, the diam-
eter of the set is the maximum distance between any two
points in the set, that is,

diameter(S) = max
x,y∈S

‖x− y‖

2 Approximate Diameters
Let ∆ be the actual diameter of the given point-set S.An ap-
proximate diameter∆ε is called anε-approximationof ∆ if

∆ε ≤ ∆ ≤ (1 + ε)∆ε

2.1 Constant-factor Approximates

Getting a constant-factor approximation in linear time is an
easy problem. For example, the following algorithm returns
a 2-factor approximation:

1. pick a point x∈ S-the given point-set.

2. Find the point y∈ S that maximizes‖x − y‖ by brute-
force.

3. ∆2=‖x− y‖

2.2 ε - Approximates

2.2.1 Basic Idea

Though there have been other attempts, the idea[2] that has
been the most successful comprises of the following two
steps:
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• Step I : Snapping points
Consider anε-grid over the d-dimensional space. Round
each point to its nearest grid-point. This step takes O(n)
time. As the grid hasε as unit-size, the error in the diam-
eter will be O(ε). Also, the maximum number of points
after this step can be O(1

εd ).

• Step II : Projection
Considerx andy as the pair of points in the given point-
set at diametrical distance. Let direction l be such that
angle(x − y,l) ≤

√
ε. Let x′ andy′ be the orthogonal

projections ofx andy on l. Then,

cos(
√

ε) ≥ 1− ε/2 − Taylor Expansion

⇒ ‖x′ − y′‖ ≤ ‖x− y‖ ≤ ‖x′ − y′‖ 1
1− ε/2

⇒ ‖x− y‖ ≤ ‖x′ − y′‖(1 + ε)

Thus,‖x′−y′‖ is an O(ε) - approximation of‖x−y‖. The
problem is to get this direction l. So, choose many direction-
vectors such that for any line L there exists a direction-vector
v with angle(L,v)≤

√
ε. Such a set of direction-vectors with

cardinality O( 1
ε(d−1)/2 ) can be found - for example, by con-

structing a grid on a unit-sphere. As the number of points
have been reduced by step I to O(1

εd ), the overall time re-
quired is O(n + 1

εd
1

ε(d−1)/2 ) i.e. O(n + 1
ε(3d−1)/2 ). Note that

had brute-force been applied after step I, the time required
would have been O(n +1

ε2d ). For analysis sake, we shall
assume that∆ ≤ 1. Note that this can be achieved by com-
puting a minimum axis-parallel bounding box inO(n) time
and scaling it.

3 Improvements
There have been improvements to the running-time of the
above technique; attempts have also been made to use a dif-
ferent approach than projection. Pioneering work has been
done by Chan[3][2], Har-Peled[6], Agrawal[1], Malandain
and Boissonnat[7] and others. The essential first step in most
algorithms is the same. It is the second step where the ap-
proaches differ. A recent development in this direction is a
theorem due to Chan[3] which computes the diameter of the
grid-points in time O(n+ 1

εd−3/2 ). We present a modified ver-
sion of Chan’s algorithm that has a worst-case time bound of
O(
√

nε( 1
εd/2 )) wherenε is the number points obtained after

projection to theε-grid. We claim that the performance will
be still better forsoft inputs, where the number of potential
diametrical pairs is small.
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3.1 Chan’s Algorithm

We will assume that O(n) time has been taken to snap the
points to anε-grid from now on. We refer the reader to
Chan’s algorithm [3]. The projection vectors can be taken
to be coming from a

√
ε-grid on a hypercube. The algo-

rithm breaks the problem into maximizing the projection on
each one of the 2d (d-1) dimensional faces of the hypercube.
It uses a subroutine that gets the maximizing points with
fixed first co-ordinates and then finds the maximum among
these. Its running time is O(n + Ed−2F ) where E=O(1ε ) and
F=O( 1√

ε
). This algorithm is optimal only if n=Ω( 1

εd−3/2 ).
Note: To get O(1) largest distances between the pairs of
points instead of just the diameter, we can keep O(1) points
at each stage of the algorithm and the running time will be
unaffected.

3.1.1 Modified Chan’s Algorithm

A weakness of the above method is that no matter how the
points are distributed in space, the time taken is the same.
We now present theModified Chan’s Algorithm.

Claim: Whenn = O(Ek), Chan’s algorithm can be modi-
fied to run in time O(n+EkF d−k−1)=O(EkF d−k−1).

Proof : We prove the above claim by modifying the algo-
rithm to use the followingNew Subroutineto compute for
eachx ∈ [F ]d−1, a pointp ∈ P ⊆ [E]d−1 × R that maxi-
mizesp1x1 + · · ·+ pd−1xd−1 + pd.

New Subroutine
1: for all i1, . . . , ik ∈ [E] do
2: for all xk+1, . . . , xd−1 ∈ [F ] do
3: r[i1, . . . , ik, xk+1, . . . , xd−1] = a point p∈ P with

p1 = i1,. . . , pk = ik that maximizespk+1xk+1 +
· · ·+ pd−1xd−1 + pd

4: end for
5: end for
6: for all xk+1, . . . , xd−1 ∈ [F ] do
7: for all x1, . . . , xk ∈ [F ] do
8: q[x1, x2, . . . , xd−1] = a point p ∈

{r[i1, . . . , ik, xk+1, . . . , xd−1]|i1, . . . , ik ∈ [E]}
that maximizesp1x1 +p2x2 + · · ·+pd−1xd−1 +pd

9: end for
10: end for

This idea of projection to a carefully chosen sub-space
is important. As in Chan’s original algorithm, we have in
lines 3 and 8 problems similar to the one we are trying
to solve. However, Chan’s idea was to use the same
algorithm recursively. Instead, we propose to solve the
reduced problem in line 3 by brute-force while the prob-
lem in line 8 shall be solved using original Chan’s algorithm.

Timing Analysis:
Let Torig(d, n) be the time needed by the original Chan’s al-
gorithm when running on a sample of size n in d-dimensions;
likewise letTmod(d, n) ,Tbrute(d, n) be the time required by

modified Chan’s algorithm and brute-force algorithm respec-
tively.

The time needed for modified Chan’s algorithm can be ex-
pressed as:

Tmod(d, n) =
Ek∑
i=1

Tbrute(d− k, ni) +

F d−k−1Torig(k + 1, Ek) +
O(F d−k−1Ek)

⇒ Tmod(d, n) =
Ek∑
i=1

niF
d−k−1 + F d−k−1Ek

(
as Torig(k + 1, Ek) = O(Ek)

)
= F d−k−1

Ek∑
i=1

ni + F d−k−1Ek

= F d−k−1n + F d−k−1Ek

= F d−k−1Ek − as n = O(Ek)
⇒ Tmod(d, n) = F d−k−1Ek

For our problem,n = O(Ek) andF =
√

E = 1√
ε
. There-

fore,Tmod(d, n) = O(
√

n 1
εd/2 ).

4 The new idea

The new algorithm is fairly intuitive. We do not attempt to
change step I of the Basic Idea. It is the second step which
looks inefficient. The basic question we ask is - Can we find
quickly, the possible candidates for diametrical directions ?
If there is a way out, we need not project on all the directions.
This notion shall now be discussed.

• Step A:
Snap the points to a

√
ε-grid and run the diameter algo-

rithm to get potential diametrical-pairs.
We now prove a simple theorem.

Theorem 1 Let ∆ be the diameter inε-grid (between
pointsp and q). Let the point-set be snapped to a

√
ε-

grid, p and q going top′ and q′ respectively . Let∆′

be the diameter in
√

ε-grid (between pointsx′ and y′).
Then,‖p′ − q′‖ ≥ ∆′ − 2

√
dε.

Figure 1: Snapping to
√

ε-grid

Proof. Observe that whena andb are snapped toa′ and
b′ on the

√
ε-grid, ‖a′ − b′‖ −

√
dε ≤ ‖a − b‖ ≤ ‖a′ −
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b′‖+
√

dε. Consider figure 1. Here,

‖p′ − q′‖ ≥ ∆−
√

dε

Also, ∆ ≥ ∆′ −
√

dε

⇒ ‖p′ − q′‖ ≥ ∆′ − 2
√

dε

�

We have seen that O(1) diameters can be maintained
using Chan’s and similarly modified Chan’s algorithm.
So, if we snap the points to a

√
ε-grid and run mod-

ified Chan’s algorithm, the time required would be≈
O(
√

nproj
1

εd/4 ) i.e. O( 1
εd/2 ) asnproj = O( 1

εd/2 ). The
above theorem then ensures that the actual diameter was
reduced to one of these obtained diametrical-pairs.

• Step B:
Get the points from theε-grid that were snapped to the
obtained diametrical-pairs from step A (henceforth this
region is called as a cell). Project these points on the
obtained diametrical pairs and return the maximum.

Step B requires a good thought as we now face a dilemma
here. If we have case(A) like situation, as shown in figure
2, it is good as we can simply project on the direction of
the diameter however if we have case(B) like situation,
näıve projection would be too costly.

Figure 2: Step B dilemma!

4.1 A Simple Strategy

To solve the dilemma in step B, we consider the following
lemma.

Lemma 2 If 2 diametrical pairs through some point A are
at an angle≤ ε1/4, then projecting the points around A
from theε-grid to just one of them is sufficient. (This effec-
tively implies that we only need to consider diameters whose
angular-separation isΩ(ε1/4).)

Proof. Consider the figure 3 shown. AB and AC are two di-
ameters having angular-separation asε1/4. Let X be a point
at distanceα along AB. We claim that the projection along
AC suffices, projection on AB is not required. This is be-
cause the error incurred, e is:

Figure 3: Determining diameters to be considered

e ≤ α− α cos(ε1/4)

≤ α− α(1−
√

ε

2
)

≤ α

2
√

ε

≤ ω
√

ε

2
√

ε − as α = O(
√

(ε))

≤ O(ε) − as ω = O(1)

�

We now adopt a simple greedy strategy 1 i.e. for each cell,
we try to use the best-available method - modified Chan’s or
simple projection - whichever is cheaper.

Algorithm 1 Subroutine for projection of points

1: for all i = 1 . . . Ed/2 do
2: if Ed/2 ≥ #(di)

√
ni then

3: simply project points in cell i (brute force)
4: else
5: project points in cell i by modified Chan’s algo-

rithm
6: end if
7: end for

Here,E = 1/
√

ε and#(di) is the number of diametrical
pairs corresponding to celli.

The following theorem [6] constraints the number of near-
diametrical pairs.

Theorem 3 Let diameter be scaled to 1 and ab and yz be two
diametrical pairs returned after step A of the new algorithm.
Then both of the following statements cannot simultaneously
hold true:

• All of ‖a− y‖, ‖a− z‖, ‖b− y‖, ‖b− z‖ ≥ 3ε1/4

• Angle(a-b,y-z)≤ ε1/4/3

whereε < 4/9.

5 Bad Cases - Nearly Spherical Distribution

Perfectly Spherical: Lets first look at a perfectly spherical
distribution.
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Figure 4: Perfectly spherical case - GOOD

In this case, for each diameter AB,

θ ≈ arccos(
1−

√
ε

1
)

⇒ θ ≈ ε1/4

This however by lemma 2 is a good-case for us. For each
ball, we need to consider O(1) diameters only and hence we
require O(n+ 1

εd/2 ) time.

Nearly Spherical: We now take up the case of nearly spher-
ical distributions. All points in region AB are potential diam-

Figure 5: Nearly spherical case - BAD

eters here and angle AOB isΩ(ε1/4), sayε1/5. In this case,
the running-time tends towards its upper bound. It must be
noted that the number of potential diametrical pairs is very
large here.

6 Conclusion
We have thus presented a practical algorithm based on
Chan’s algorithm [3] that gives good performance forsoft
inputs. As the distribution assumes a more spherical shape,
that is, more diametrical pairs, the running time suffers but
has an upper bound of O(n+

√
nε

1
εd/2 ).
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