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On some monotone path problems in line arrangements

Adrian Dumitrescd

Abstract

We give tight estimaten the minimum lengthof alongest
mondone pathin an arrargementof n lines, wherelength
courts the numter of turnson the path. Tight estimatesare
also obtaired for the casewhenlengh countsthe nunber
of visited vettices. Whenlengthis definedasthe size of a
convex/concare chainin the arrangmentan exactbound is
obtainel.

1 Introduction

Considelasetl of n linesin theplane.Thelinesof £ induce
acell comdex, A(L), calledthe arrangement of £, whose
vertices arethe intersectiorpointsof the lines,whoseedges
arethe maxima pottions of lines contairing no verticesand
whosetwo-dimersionalcells arethe comectedcompaments
of R? \ Uge /. It is assumedhatnoneof thelinesis parallel
to they-axs.

Oneof the propertiesof a line arrangmentwith n lines
is the maximumpossiblelength dended by \,,, of an z-
mondone polygonal line (path) compsedof edges of the
arrang@ment.Thelengthis definedasthe numker of turnsof
the polygonalline plusone(i.e., the numter of sgmentsof
the polygonalpath) Theproblemto estimate\,, wasposed
in [4]. The bestknown lower bound, dueto Baloghet. al.
[1], is subquadatic: Q(n2/CVIe™), whereC' > 1. It im-
provedon earlierresultsdueto Sharir[3, 4], Matowsek[6],
Radoti¢ andT6th [7]. Fromthe oppositedirection no sub-
quadatic upperbouwnd is knowvn. Suchbouwnds have been
recently obtaired only for line arramgementswith a small
numter of slopeq2].

In this pape we corsidersomerelatedquestion®nmoro-
tonepaths.An arrangmenbflines, A(L), is calledsimpleif
notwo linesin £ arepardlel andnothreelinespasshrough
the samepoint (vertex). For the prodemsthatwe arecon-
sidering we will furtherassumehe arrargementis simple.
Let A beanarrangmentof n lines; we write | A| = n. We
dende by V' (A) the setof its vertices. By the above as-
sumption the total number of verticesin the arrang@mentis
V(A = (3).

The k-level of anarrangmentof n linesis the closureof
the setof points on thelineswith the propety thatthereare
exactly k linesbelow them(k = 0,...,n — 1). Thek-leve
of aline arrargements alsoa z-mondone polyganal path,
whichturnsateachvertex of thearrargementhatliesonthe
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path. Let /(A) bethelengthof alongestlevel in A, where
lengthis the numker of vetticesplusone,i.e.,the numker of
segmerisonthelevel. Puti(n) = min 41—, I(A).

Let t(A) bethelengthof alongestmondonepathin A,
wherelengthis thenunberof turnsplusone,i.e.,thenumker
of sggmentsonthepath.Putt(n) = min| 4 —, t(A). Clearly
I(n) <t(n).

Theorem 1 Each simple arrangement of n lines admits a
monotone path of length at least n, where length is the
number of turns plus one. This bound is asymptotically
tight: for each n > 2, there exists a line arrangement in
which no monotone path is longer than 4n/3 + logn. Thus
n <1(n) < t(n) < 28(1+0(1)).

Radoti¢ andToéth have obseredthatif lengthis definal
as the nunber of verticesof the arrargementvisited by a
morotonepath, it is easyto constriet examges which ad-
mit pathsof lengthQ(n?). We shaw thatthis canbe further
strengtlened.

Theorem 2 For each n > 2 there exists a simple arrange-
ment of n lines that admits a monotone path which visits all
its vertices.

Letv(A) bethemaximum numbe of verticesvisitedby a
morotonepathin A plusone.Putv(n) = min| 4=, v(A).

Theorem 3 Each simple arrangement of n lines admits a
monotone path which visits at least n — 1 vertices. This
bound is asymptotically tight: for eachn > 2, there exists
a line arrangement in which no monotone path visits more
than 3n/2 + log n vertices. Thusn < v(n) < 32(1+ o(1)).

Let ¢y (A) (resp.c2(A)) bethelengthof alongestmonc
tonecorvex (resp.concae) chainof A4, wherelengthis the
nunber of turns plus one (i.e., the nunber of sggmentsin
the chain) andwrite ¢(A) = max(c1(A),ca(A)), ¢(n) =
min| 4—n, c(A). We havec(n) < t(n) < wv(n).

Theorem 4 Each simple arrangement of n lines admits ei-
ther a monotone convex chain or a monotone concave chain
of length at least 10‘;"(1 + o(1)). Thisbound istight. More
precisely, let N = N(n) be the minimum number such that
any simple arrangement of NV lines admits a convex or con-

cave chain of length n. Then N(n) = (**7}) + 1. We thus
havec(n) = 10%(1 + o(1)).

A setof poirts in the planeis in general position if no
threepointsarecollinear A finite setof points is in convex
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position if the pointsarethe vettices of a corvex polygm.
Thefollowing classicalresultof ErddsandSzeleresis well
known:

Theorem 5 [5] For any n > 3 there exists an integer f(n)
such that any set of at least f(n) pointsin general position
in the plane contains n. pointsin convex position.

Thestatementegadingthenunmberof lines N (n) in The-
orem4 is adirectconseqanceof theoriginal prod of Erdds
andSzeleresregardingpoirts in convex position

2 Making turns: proof of Theorem 1

We first showv that every n-line arrargement. A admits a

mondone path of lengthat leastn. Considerthe n levels

in thearramgementl, ..., L,_1. It iswell knovn thateach
level is a morotonepaththat turns at eachvertex it passes
throwgh. Every vertex of .4 appeas exactly in two consecu-
tivelevels,Ly, andLy; for somek € {0,...,n — 2}. This

gives

n
|Lo| + ... |Ln=1] = 2(2) =n(n—1),

where |Li| is the compledity (i.e., numker of ver
tices) of level k. Let ¢ be such that |L;] =
max{|L1|,...,|Ln|}. Then|L;| > n—1,andL; isamoro-
tonepathof lengthatleastn. Hencet(n) > I(n) > n.

For two setsof poirnts P,Q C R?, we write P < Q if
z(p) < xz(q) for any pairof pointsp € P, q € Q.

We now shaw the upperbourd in Theoem 1. We re-
cursively construt anarrangmentof lines.4 by puttingto-
gethertwo arrangmentspnewith |n/2] lines, 4, andone
with [n/2] lines, A;. SeeFig. 1. Thelinesin eachA;,
i = 1,2 arealmostparallelto eachother andthe slopesof
thelinesin A; arecloseto m;, wherem; < mo. Themin-
imum slopeof linesin A; is equalto m;, andthe slopesof
thelinesin A4; aresmallerthanthe slopeof thelinesin A,.
In additian, all theverticesof A; and.A, lie left from those
betweerary pairof lines(¢;,¢;), ¢; € A; and{; € A,. That
is, V(A1) UV (A2) < V(A)\ (V(A1) UV (A2)). There-
cursie steprequresconpressingheresultingarrangments
with respecto the lines of slopesm; andms respectiely
before comhbining them.

Let t(n,j bethe maximun lengthof a mondonepathin
the arrangmentA with n lines, whoselast sggmeri is on
linej, j = 1,...,n (weindex thelinesin increasingorder
of slope).We claimthatfor ary n,

2n/3+2j+logn f1<j<n/3
t(n,j) << 4n/3 +logn ifn/3<j<2n/3
8n/3—2j+logn if2n/3<j<n

andnotethatthis inequality impliesour bourd. We proceed
by inductionon n. The basisis satisfiedsincet(1,1) = 1
andt(2,1) = ¢(2,2) = 2. Letn > 3. Consideramondone

Figure 1: Arrangementof eightlinesobtainedrecursvely.

pathp in A. We distingush four casesasto how p enters
andleavesthe staircasgunctionformed by the lines of A

and.4,. SeeFig. 2. Leti dende theindex of theline on
whichp leaves A; or A, befae enterirg the junction Each
casehassix subcasesccounting for which interval ¢+ and
j belorg. To avoid unneessarydetailswe omit £1 terms,
floors andceilingsaswell asthelog termsin verifying each
of the cases. The logaithmic termin the bourd coversall

these.

1 77 =2

Vi

i=4

Figure2: Staircasgunctionin anarrargemenif ninelines,
anda momtonepathasin casel of theprod of Theoren 1.

Case 1. p enterghejunction onaline of A- andleavesit
onalineof A;. Wehavel <i < Fandl <j < §. The
nunberof turnsin thejunctionis atmost2 min(z, j) — 1 <
2 min(i, §).

Subcase1.1: 1 <i< gandl <j < 7.

2 . .
5” + 2j, for 2 <

2
t(n,) < 22 4 2i + 2min(i, j) < _g.

32
Subcase1.2: ¢ <i< gandl <j < 3.
. 4n o 2 .
t(n,j) < 33 + 2min(i, j) < 3" + 25, clearly holds.

Subcase1.3: 2 <i < Fandl <j

IA
@[3

8 2 2
t(n, j) < 5% — 2+ 2min(i, j) < Tn + 2, for 2 > ?"
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Subcasel4:1<i< gandg <j< 3
N _2n . TN ,
t(n,j) < 33 + 2i + 2min(i, j) < 37, since 4i < m.

Subcase 1.5: ¢ < i < 7 and

|3

<J

IN
S]]

4 2
t(n,j) < gg + 2min(i, j) < =n, since 2i < ?n

Subcase 1.6: 3 <i < 5 and

=~

w3
N e
.
IA
N3

8 4
t(n,j) < gg — 2{ + 2min(,j) < 3" clearly holds.

Theremairing threecasesareomittedfor lack of space.

3 \Visiting vertices: proofs of Theorem 2 and Theo-
rem 3

We startwith the prod of Theoem 2. The arrangmentin
Fig. 3 admitsa mondone pathwhich visits all its vertices.
Considefrfirst the caseof evenn. The arrangmentcanbe

6 5

Figure3: Arrangementof six linesanda morotonepath(in
bold) whichvisits all 15 verticesof thearrangment.

iteratively constrictedby addingthelinesin pairs.Firstadd
two linesmakinga smallande with thehoiizontalaxis. De-
noteby A,; thearrargementormed by thefirst 2 linesfor
i=1,2,...,n/2. Having placedthefirst 2(i — 1) lines,add
two lines/s; 1 andly; to getAs;, wherels; hasasuficiently
large positive slopeand/,;_; hasa sufficiently large nega-
tive slope. In addition (i) the point of intersectio between
£2;—1 andly; lies abore ary of thepreviouslinesand(ii) the
points of intersectio between/y; 1 andthe previous lines
andthosebetweer?,; andandthepreviouslineslie left of all
verticesof Ay;_ 9, i.e.,V(Azi) \ V(.Azz;z) < V(.Azi,z). It
is clearthatthecorstructioncanbeiteratedasmary timesas
desired. The mondone pathwhich follows lines¢,,, . .. , £,
in this order — illustratedin Fig. 3 for n = 6 — visits all
vertices. For the caseof odd n, line £5; is removed along
with the pottion of the mondonepathwhich it suppots.

We now prove Theoren 3. Sincev(n) > t(n), thelower
bourd follows from Theoren 1. We now shav the upper
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bowndin Theorem3. Let v(n,j bethe maximum lengthof
amorotonepathin the arrangmentA with n lines, whose
lastsegmert is online j, wherej = 1,...,n (weindex the
linesin increaingorder of slope).We claim thatfor ary n,

v(n,j) < n+min(j,n - j) + logn,

andnotethatthis inequalityimplies our bound. We procee

by indudion onn. Thebasis,;n = 1 andn = 2 is satisfied.
Letn > 3. Considera monotme pathp in A. We distin-

guishfour casesasto how p entersandleavesthe staircase
junction formed by thelinesof A; andA,. SeeFig. 2. Let

1 dende the index of the line on which p leaves A, or A,

befae enteringthejunction.

Case 1: p entersthejunction on aline of A5 andleaves
it onaline of A;. Wehavel < i < [n/2]. Theinduc-
tion hypothesisgives v(n, j) < [n/2] + min(i, [n/2] —
i) + log[n/2] + (¢ + j — 1), wherethetermi + j — 1
bouwndsthe numler of verticesvisited in the junction. Re-
placingmin(i, [n/2] —4) by [n/2] —1, it is enowghto verify
that2[n/2] —i+i+j — 1+log[n/2] < n + j + logn.
Theinequalityclearlyholds.

Case 2: p entersthejunction on a line of A5 andleaves
it on aline of 4. We harel < i < [n/2] and
j > [n/2] + 1. Theinduction hypahesisgives v(n, j) <
[n/2] + min(i, [n/2] —i) +log [n/2] + (2|n/2] + i —j),
wheretheterm2|n/2| + i — j bowndsthe numter of ver
ticesvisitedin thejunction Replacingmin(i, [n/2] — %) by
[n/2] —i,weaimto shaw 2[n/2] —i+2|n/2| +i—j +
log [n/2] < 2n — j +logn. Theinequalityobviously holds
sincelog [n/2] < logn.

Case 3: p enterghejunction onaline of A; andleavesit
onalineof A;. Wehavel < i < j < [n/2]. Theinduction
hypothesisgivesv(n, j) < |n/2] + min(i, [n/2] — i) +
log |n/2|+[n/2]+j—i,sincethenumterof verticesvisited
in the junction is not more than[n/2] + j — i. Replacing
min(i, [n/2]| — %) by i, we aim to shaw that [n/2] + i +
[n/2] +j—i+log|n/2] <n+j+logn. Theinequality
is obvious.

Case 4: p enterghejunction onaline of A; andleavesit
onaline of 4;,. Wehavel < i < |n/2] andj > |n/2]| +
1. The induction hypothesisgives v(n,j) < [n/2] +
min(i, [n/2| —i) +log |n/2] + (n+1—i—j+ [n/2]).
Thelasttermbourdsthenumbe verticesvisitedin thejunc-
tion. Replacingmin(i, |n/2]| —i) by, wewantto velify that
[n/2]+i+n+1—i—j+|n/2]+log|n/2| < 2n—j+logn.
Theinequalityfollows from: log [n/2]| + 1 < logn.

4 Making left (or right) turns only: convex/concave
chains and the proof of Theorem 4

A setX of pointsin generapositionin the plane,notwo on

a vertical line, is ann-cap (n-cup, respectiely) if X isin

convex positionandall pointsof X lie above (belaw, respec-
tively) theline conrectingthe leftmostpoint of X with the
rightmostpoirt of X (seeFig. 4).
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Figure4: A 4-capanda5-cup

2n—4

ErdésandSzeleresprovedthatary setof atleast (*"~,) +
1 pointsin geneal positionin theplane,notwo onavettical
line, contairs ann-cup or ann-cap[5]. They shoved that
this bownd is tight, i.e., thereexist setswith (*,!) points
containng no n-cup or n-cap. More generdly, thereexist
setswith (*}'5*) pointscontainirg no k-cupor I-cap.

Proving the main part of Theoren¥ is an exercisein us-
ing thepoint-line duality transfom. Fix an(z, y)-coodinate
systemin the planeand considerthe duality transfam D
whichmapsapointp = (a, b) to thenonverticalline p* with
equatim y = ax — b. Corversely a norverticd line [ with
equatio y = ax + b is mappedo thepoirt [* = (a, —b).

Lemma6 A set of n > 3 points forms an n-cup (n-cap,

respectively) if and only if the dual lines form a monotone
convex (concave, respectively) path of length n.

Theoem5 impliesviaLemma6thatN(n) < (°*7) +1.
As mentiored above, thereexist setswith (>"~!) points in

n—2
geneal position, no two on a vertical line contairing no
n-cup or n-cap The dual setof lines forms a simple ar-
rangenentwith (2::24) lines that hasno mondone convex
or concae path of lengthn, thus N(n) = (**7)) + L.

The asymptoticrate of the above binomial coeficient gives
c(n) = %8(1 + o(1)), corcludingthe proof of Theoem4.

5 Conclusion

Our constantsn the upper boundsin Theoem 1 andTheo-
rem 3 arebestpossiblefor thearrangmentin Fig. 1. Con-
siderfirst the nunberof turns. By repeately usingi ~ n/3
(onaline of A,) andj ~ n/3 ateachstepof therecusion,
onegetsa mondone path of length~ %n + %% +...=
nyo L =4n

3 Lui=0 27 3 L .

Considemow the numter of visited vertices. By repeat-
edly using: ~ n/4 (onaline of 4,) andj ~ n/2 ateach
stepof the recusion, one getsa mondone path of length
~ 3 3n _ 3n c© 1 _ 3n

Clearly, takingawalk onary line of anarrangmentvisits
n — 1 verticegwhichgivesanothe prod of thetrivial bound
v(n) > n). Are theremondonepaths(in ary arralgement)
whichvisit (1 + §)n verticesfor someconstant > 0 ?

For a setS of n poirts in the plare, a subsetS’ of S is
calledak-setof S, 1 < k < mn—1,if S" hasexactly k points
andit canbecutoff S by astraightline disjointfrom S (see
e.g.[8]). It is straightfowardto corstructexanplesof point
setswhosenumter of k-setsis n for eachk € {1,...,n —
1}, namdy poirtsin corvex position. The point-line duality
transfom providesexamgesof line arranggmentsvherethe

compexity of eachleved is rougHy at most2n. It is not
clearhowever whetherthis bourd canbe browght down to
abou n: Doesv(n) = n(1 + o(1)) hold?If not,doesary of
t(n) =n(1+ o(1)) ori(n) = n(1 + o(1)) hold?
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