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Abstract

A proldemfrom shapdfitting is finding the sphee which has
the leastsumof squaredit to a setof points. Most curren
algorittmsfor this useaniterative processwith randanized
restarting. We presen instead,two geometic transfoma-
tions, andalgoithms derived usingthem,which presental-
ternatemethals of solvingthe problem. We discussrunring
of thesealgoritimsin threedimersions,andnotethe algo-
rithms have favorabletime compleities in high dimersion.
Finally, we presentirectionsfor futurework.

1 Introduction

Someproddemsrelatedto leastsum of squareditting have

simple direct solutions,including that of finding a hyper

plane throwgh points. Other problens do not have such
a simple solution including that of fitting a hypersphere
throwgh points.

Leastsum of squaesfitting to a setof points offers one
intuitive notion of the shapeof the poirts. Certainproblems,
like fitting a line to points in R2, are easily solved by, for
instance taking the averageof the poirts in R?, andthen
settingup a matrix andfinding the eigervaluesand eigen-
vectos. The leastsignificanteigevaluecorrespadsto the
eigervectorwhich is nomal to the line, andthe averageof
the pointsis a point on the line, which togetter completely
definesthe leastsumof squareditting line. This algaithm
genealizes to finding a hyperplam throudh poirnts in R¢
[5, 3.

However, algaithmsfor fitting othershapesrenot asdi-
rect. For the casewe are concened with, fitting a circle,
sphere,or hypersphee to poirts in the co-dmensionone
caseall algoithmsfound arevariatiors on anon-lineariter-
ative algoiithm [5, 3]. Theideaof the algorithmis to place
a centerin spacegvaluatethefit of the circle andwhich di-
rectionthe centershouldbe movedin to prodice a betterfit.
The centeris moved slightly andthe processepeded until
the centerhasconverged. Sincetherecanbe local minima,
theproessmustberestartedrom severaldifferert locatiors
to ensurgheleastsumof squardit is obtaired.
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This algorithm hasdravbacks. The runring time is un-
bownded, and no upperbourds on the runnirg time have
beenfound. Thealgorithm requires adefinitionof converged
whenrunwith floating-pint arithmeic. No known proof of
correctnes®xists,andmostimplementationssimply call for
a nunber of restartsuntil the samelocal minima have been
found.

Here we useideasfrom geoméry to convert the gen-
eralized spherefitting prablem into a problan more eas-
ily solved Two particdar transfamatiors, inversive trans-
formation and stereogaphic projectio, are appliedto the
problem. Algorithms using both transfomationsare de-
scribed A preliminay practical implementationfor the
threedimensioml casds discussedasareresultsfrom com-
parirg thesetwo algoritthmswith thenon-lineariterative pro-
cedue.

2 Inversive Transformation and Algorithm

Inversive geonetric transfomationsare well establisheds
both geometically interestingand useful from a compua-
tional perspectie [1, 2]. We explain the onewe usein de-
tail. Considerary point (callit theinversive point) p, ¢, r and
all poirts z;,y;, z;. Aroundthe inversive point we imagire
aninversive spherg(not to be confusedwith the sphee we
aretrying to find) with aradiws k. Eachdatapointis now
transfamedaccoding to thefollowing equdions:
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This transfornation has several useful and interesting
properties.First, it shouldbenotedtheinversionpoirt p, g, r
will be undefinedunderthis transfamation sincethe de-
noninatorwill be zero. Geometersolve this by takingit to
infinity, andtakingthe point atinfinity backto theinversion
point. We, however, canignore the inversion point’s trans-
formation.Secondthetransfomation,withouttheinversion
poirt or infinity, is self-dwal. Pointstransfamedtwice will
retum to thesamepoirt.
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Finally, the mostinterestingproperty, andthe onewe ex-
ploit for the algoithm, is thatfor spheesthat passthrough
the inversion point (i.e. if all the datapoints andinversion
point lie on a sphere)the transforned pointswill lie on a
plane.lt follows that pointsdistributedroughly on a sphere,
with the leastsumof squars fit sphee passingthrough the
inversionpoint,will alsolie nearaplane.

Synthesiof theinversetransfomationdefinedabove, the
technigiefor fitting datato a plane ,andanassumptioomade
abou the dataandthe leastsumof squaessphereyesultin
a quadatic time algorithmfor finding the leastsum square
spherefitting threedimensiomal datapoints. The assump-
tion we make is thatthe leastsumof squarespherewe are
searchindor passeshrough at leastone of the datapoirts.
We find this to be a reasoableassumptionn practice.This
algorithm is good dueto guaanteedruntime and accuacy
asshavn belov. The possibility for improvemens, andthe
genealizationto ary dimensim, may prove usefulfor other
applications.

The algorithmis straightfoward and easyto implemen
with a eigersystemsolver to do theleastsquareditting to a
plane.

1. Considerary setof points P to find the least
sumof squars sphereof.
2. For eachpointp;eP.

a. Let p; betheinversion point p, ¢, and data
points z;, y;, 2; beall the otherpointsin P.

b. Invert the datapointsaccordng to the above
transfamatiors with k¥ = 1. Call theresulting
poirts t;.

c. Solve for theleastsumof squars planefit to
thepoints ¢; usingstandad techriques.

d. Findthepointonthe planeclosesto p;. Call
thisa.

e. Trarsforma accordng to the above transfa-
mation with k£ = 1. Call thisa’.

f. p; anda’ are two points on a diameterof
sphee. Theiraverages thecenterc;.

g. Findthe bestradiusfor the spheregiven this
center

h. Keepthis centerandradiusas bestif they fit
better than the current least sum of squares
sphee.

3. Outpu the bestfound centerandradius.

Conceptally, thealgoithm asks,if thebestsphergasses
throwgh it, whatwould the centerof thatspherebe? It gen-
eratescanddatecentes for eachpoint, andtestseachoneto
seewhichfits best. The overall comgexity of the algaithm
is O(n?d?) wheren is the numter of input pointsandd is
thedimensiorof the prodem.

However, thisis nottheentirestoryfor thisalgorithm. Ide-
ally, during eachiteration, the fit of the planein inversive
spaceshouldcorrelateto the fit of the spherein the normal
space. To checkthis, somesampledatasetswere checled
for the caseof fitting a sphereto pointsin R3. However,

Figurel: Theinversive algoritim in R3. A. Thedatapoints
in darler gray. B. Theinversive spherefor onestepshawn,
the inverted points shavn in light gray C. The weightel
planefound shavn with arotatedversionof theinveteddata
poirts. D. Thespherdfit from this singleiteration.

whena correlation line wasfit to theleastsumsquardfits in
bothspacesthe R2valuecalculatedvas0.23

This low R2value can be attributed to the following:
poirts very closeto the inversion point but slightly off the
sphee beingsearchedor will endupveryfarawayfromthe
planein the inversive space. This large distancecan skew
the planefit. Thesolutionis to assignthe pointsa weight-
ing basedon their distancein the normal space. However,
an ideal weighting schemewas not found from the geom
etry, and several options were testedempiricdly. The best
weighting schemeweigtts eachpoirt by df whered; is the
distancan the normal spacerom theinversionpoirt.

Thisweighting changsthe setupof the matrix to solvein
stepc. The prodemis now a weightedleastsumof square
planefit, but can be solved without asymptdically more
work. The R?valueof the correlation betweerthe weighted
sumof squaesfit of theplaneto thesumof squaredit of the
sphee usingthe d} weightingschemewvas0.9252, whichis
not perfectandsuggestshereis roomfor improvemern.

3 Stereographic Projection and Algorithm

The secondalgorithm usesa steleagraphic projection also
known asa Riemannsphee transformatio. The transfa-
mationmapsa d-dimersionalspaceo ad + 1-hypersgnere
In R3, thetransfamedpointsall lie to a4-sphee centeedat
theorigin with aradiusk:

let a = 22 + y?2 + 22 then (z,y,2) ~

2z 2y 2z a—k
a+k? at+k’ atk’ atk

105



16th Canadian Conference on Computational Geometry, 2004

The key property taken adwantageof in this algorithm is

that pointson a spherein the d-dimensimal normd space

will lie onad-dimensioml sphereonthed + 1-dimersional
hypersphee. In the casepresentd, points on a 3-sphee in
R? will lie ona3-splereonthe4-splerein thetransfomed
space This 3-spleredefinesa unique hyperplanein R*, and

canbeeasilyfound againusingthetechnqueof leastsquares

fitting to ahyperplane.

The assumptiormadehereis againthat points closeto
a spherein the original spacewill lie closeto a spherein
the transfoamedspace.Again, this is not completelyaccu-
rate,aspointsvery far away from the origin mapto points
very similar, while pointscloseto the origin couldskew the
planefound. We usea weightingschemederived for the 2-
dimensimal caseof circle fitting of (1 -+ d?)”, whered; is
the distancein nomal spacefrom the origin [6]. We tested
several otherweighting schemesxperimentally and found
this oneto have the bestR2valueandshoving goad correla-
tion betweerthe prablemsin eitherspace.

For this algoiithm, pointsmustbe shiftedsothatthey are
closerto theorigin, sinceif all pointsarefarfrom theorigin,
they will mapto nearlythe samepoint in the transfomed
space.With theseconsideratiasin mind, we canwrite an
algorithm:

1. Consideiary setof points P to find theleastsum
of squaessphereof.

2. Shiftall pointsin P sothattheorigin lies atthe
averag of thepoirts.

3. Transfam points onto the d + 1-dimensional
Riemanrsphereletk = 1.

4. Giveeachpointaweightaccordngto (1 + df)2
whered; isthedistancdrom theoriginin nomal
space.

5. Setupandsolve the weightedmatrix to find the
nomal to the
planethatbestfits the transfamedpoirts.

6. With the normal,andthe distancefrom the hy-
pergane,directly solve for the centerin nomal
space.

7. Findthebestradiusasthe averagedistancerom
thecenterto all thepoirts.

8. Outpu thefoundcenterandradius.

This algorithmis straightfoward, and easyto codewith
an eigersystemsolver. The overall time compleity is
O(n- (d + 1)?), againwheren is the size of the input and
d is thedimension It is gererally betterthanthe previous
algorithm in termsof thecompleity, sinceit tradesanorder
of magntudein termsof theinput sizefor the small penalty
of a slightly bigger matrix to setupandsolve. In effect this
algorithm solvestheproblemby takingit upadimensiorand
trasforning the answerbackdown. This is only doneonce
whereagheinversive algorithm loops over every datapoint.
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Figure2: TheRiemannalgoritrm in R3. A. Thedatapoints
in darkgray B. Thepointstransfomedontothehypersphee
with linesconnetingtheoriginal andtransfomedpoints.C.
The points (with dimension4 shovn asgrayscale)on a 4-
sphee. D. The weightednormd found. E. Thefinal least
sumof squarsfit sphergound by thealgorithm
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4 Implementation Comparison

Thesethree algoithms were implemened and compared
using Java, Java3D for vecta math and visualization,and
JAMA to solve eigervaluesandeigervectos. We only tested
ourresultsfor d = 3. We wereencouagedby goodresults
for thed = 2 caseof the WeightedRiemannSpherealgo-
rithm doneby Strandlieet al. [6], andmary implementa-
tions of theiterative procedure[5, 3]. Our goalwasto test
theefficiengy andaccuagy in thethreedimensioml case.

Our samplepoint setswere rouchly betweenl and 10
units acrossin ary dimersion. This producedgod results
whenusinginversia or Riemannspheref radiusl. Fur
thereffect of theradius ontheaccueacgy shouldbe evaluated.

Two exampleruns of the algoithms preseted hereare
shavn in Figurel and2. Again, theseexanplesarefor the
R3 case.

We compaed both the accurag and speedof the three
algorittms. In our implemantation of the nontlinear itera-
tive procedire, the centerwas assumedo have converged
if it did not move in ary direction by more than 0.000005
units. While this valuemay seemhigh, it did resultin run-
ning times that were practical. Also, only 2 restartswere
usedwith thesecondorcedto startin theoppaitedirection
of thefirst. Thisalongwith amaximum nunberof iterations
setto 10000 allowedthe algorithm to repat goad resultsin
reasonale time. More accuateimplenmentationscould slow
theoverall runring time.

No algorithmasimplementedperfamedconsistenthbet-
terthanthe othertwo. For low numkersof points,the Inver
sive andRiemannalgorithms performedequdly well, while
the nondinear iterative algorithm did not matchthe perfor-
mance.For large numbes of poirts, the Inversive andNon-
linear algoithms performedequallywell, andthe Riemann
algorithm hadmuchworseaccurag. Theeffect of Riemann
sphereadius beinglargermayimprovetheaccurag in cases
wherethe nurmberof pointsis large

In termsof speedthe asymptéic bounds shavn for the
Inversive and Riemannalgorithns wereverified. The Non-
linearalgorithm thoudh having notheoreticaupperbounds,
did exeautefasterthanthelnversive algoithm. TheRiemann
algorittm grew linearlyin the sizeof theinput, asexpected,
andwas much fasterthan the othertwo algorithns, at the
experse of being lessaccurate(as implemented) for large
numtersof poirts.

5 Conclusions & Future Work

Thetwo algolithmspresentedhereasoptiors to anondinear
iterative procelure have beenshownn to work in testcases,
andfurtherwork could make themgenerallyuseful. A bet-
terweightingschemederived analyticallyfrom the problem
wouldbeagreatimprovement, aswould bethetestingof the
effectof varying thesphergadius usedn thetransfamation.
Anothe possibility is to attemptto usethe fastRiemann

algoithm asa bestguesdor the non-linearprocedire, with
the hope of corverging quicKy to the global minimawhich
correspond to theleastsumof squaredit sphere.

In terms of dimension thesealgorithirs have favorale
time compleities. Othershapditting algoritmsfrom com-
putaticnal geoméry typically have complexities thatareex-
porential in termsof d [4]. Thesealgoithms only have
quadaticcompgexities, whichcouldbeusefulin highdimen
sionalcases.

Theraremary otherdirectionsfor futureresearchTrans-
formationsfor othershapefitting prodems, like ellipsoids,
couldbeexplored. Also, insteadof the leastsumof squares
fit, aleastmediansquaredit couldbeexplored.
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