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A problemfrom shapefitting is findingthespherewhichhas
the leastsumof squaresfit to a setof points. Most current
algorithmsfor thisuseaniterativeprocess,with randomized
restarting. We present, instead,two geometric transforma-
tions,andalgorithmsderivedusingthem,which presental-
ternatemethodsof solvingtheproblem.We discussrunning
of thesealgorithms in threedimensions,andnotethe algo-
rithmshave favorabletime complexities in high dimension.
Finally, we presentdirectionsfor futurework.
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Someproblemsrelatedto leastsumof squaresfitting have
simple direct solutions,including that of finding a hyper-
plane through points. Other problems do not have such
a simple solution, including that of fitting a hypersphere
throughpoints.

Leastsumof squaresfitting to a setof pointsoffers one
intuitivenotion of theshapeof thepoints. Certainproblems,
like fitting a line to points in  "! , areeasilysolved by, for
instance,taking the averageof the points in  #! , and then
settingup a matrix andfinding the eigenvaluesandeigen-
vectors. The leastsignificanteigenvaluecorrespondsto the
eigenvectorwhich is normal to the line, andthe averageof
thepointsis a point on the line, which together completely
definesthe leastsumof squaresfitting line. This algorithm
generalizes to finding a hyperplane through points in  %$
[5, 3].

However, algorithmsfor fitting othershapesarenotasdi-
rect. For the casewe are concerned with, fitting a circle,
sphere,or hypersphere to points in the co-dimensionone
case,all algorithmsfound arevariations onanon-lineariter-
ative algorithm [5, 3]. The ideaof thealgorithmis to place
a centerin space,evaluatethefit of thecircle andwhich di-
rectionthecentershouldbemovedin to produceabetterfit.
Thecenteris moved slightly andtheprocessrepeated until
thecenterhasconverged. Sincetherecanbe local minima,
theprocessmustberestartedfrom severaldifferent locations
to ensuretheleastsumof squarefit is obtained.&
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This algorithm hasdrawbacks. The running time is un-
bounded,and no upperbounds on the running time have
beenfound. Thealgorithm requiresadefinitionof converged
whenrunwith floating-point arithmetic. No known proof of
correctnessexists,andmostimplementationssimplycall for
a numberof restartsuntil thesamelocal minima have been
found.

Here we use ideas from geometry to convert the gen-
eralizedspherefitting problem into a problem more eas-
ily solved. Two particular transformations, inversive trans-
formation and stereographic projection, are appliedto the
problem. Algorithms using both transformationsare de-
scribed. A preliminary practical implementation for the
three-dimensional caseis discussed,asareresultsfromcom-
paring thesetwo algorithmswith thenon-lineariterativepro-
cedure.
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Inversive geometric transformationsarewell establishedas
both geometrically interestinganduseful from a computa-
tional perspective [1, 2]. We explain the onewe usein de-
tail. Considerany point (call it theinversivepoint) =?>A@,>CB and
all points D�E6>CFGEC>6HIE . Aroundthe inversive point we imagine
an inversive sphere(not to be confusedwith the sphere we
aretrying to find) with a radius J . Eachdatapoint is now
transformedaccording to thefollowing equations:

D ELKM J�!GNOD�EQPR=�SNODTE?P2=�S !"U NOF.EVPW@�S !"U NXHIEVPWB�S ! U =
F ELKM J�!GNXFGEVPY@�SNXDTEQPR=�S !ZU NXFGEVPY@�S ![U N\H]EQP8B�S ! U @
HIE KM J ! N\H E P8B�SNOD�EQPR=�S !ZU NXFGEQPY@�S !"U NXHIEVPWB�S ! U B

This transformation has several useful and interesting
properties.First, it shouldbenotedtheinversionpoint =L>6@,>6B
will be undefinedunderthis transformation, sincethe de-
nominatorwill bezero.Geometerssolve this by takingit to
infinity, andtakingthepoint at infinity backto theinversion
point. We, however, canignore the inversion point’s trans-
formation.Second, thetransformation,withouttheinversion
point or infinity, is self-dual. Pointstransformedtwice will
return to thesamepoint.
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Finally, themostinterestingproperty, andtheonewe ex-
ploit for thealgorithm, is that for spheresthatpassthrough
the inversion point (i.e. if all the datapoints andinversion
point lie on a sphere)the transformed pointswill lie on a
plane.It follows thatpointsdistributedroughly on a sphere,
with the leastsumof squares fit sphere passingthrough the
inversionpoint,will alsolie neara plane.

Synthesisof theinversetransformationdefinedabove,the
techniquefor fitting datato aplane,andanassumptionmade
about thedataandtheleastsumof squaressphere,resultin
a quadratic time algorithmfor finding the leastsumsquare
spherefitting threedimensional datapoints. The assump-
tion we make is that the leastsumof squaresspherewe are
searchingfor passesthrough at leastoneof thedatapoints.
We find this to bea reasonableassumptionin practice.This
algorithm is gooddueto guaranteedruntime andaccuracy
asshown below. Thepossibility for improvements, andthe
generalizationto any dimension, mayprove usefulfor other
applications.

The algorithmis straightforward andeasyto implement
with a eigensystemsolver to do theleastsquaresfitting to a
plane.

1. Considerany setof points ^ to find the least
sumof squares sphereof.

2. For eachpoint = EX_ ^ .
a. Let = E be the inversion point =?>A@,>CB anddata

points D E >CF E >AH E beall theotherpointsin ^ .
b. Invert the datapointsaccording to the above

transformations with Ja`cb . Call theresulting
points dCE .

c. Solve for the leastsumof squares planefit to
thepoints d6E usingstandard techniques.

d. Find thepoint on theplaneclosestto =eE . Call
this f .

e. Transform f according to the above transfor-
mation, with Jg`hb . Call this f�i .

f. = E and f�i are two points on a diameterof
sphere. Theiraverageis thecenterj E .

g. Find the bestradiusfor the spheregiven this
center.

h. Keepthis centerandradiusasbestif they fit
better than the current least sum of squares
sphere.

3. Output thebestfoundcenterandradius.

Conceptually, thealgorithm asks,if thebestspherepasses
through it, whatwould thecenterof thatspherebe? It gen-
eratescandidatecenters for eachpoint,andtestseachoneto
seewhich fits best.Theoverall complexity of thealgorithm
is klNOmQ!on�!IS where m is the number of input pointsand n is
thedimensionof theproblem.

However, thisis nottheentirestoryfor thisalgorithm. Ide-
ally, during eachiteration, the fit of the planein inversive
spaceshouldcorrelateto thefit of thespherein thenormal
space.To checkthis, somesampledatasetswerechecked
for the caseof fitting a sphereto points in  qp . However,

Figure1: Theinversive algorithm in  rp . A. Thedatapoints
in darker gray. B. Theinversive spherefor onestepshown,
the inverted points shown in light gray. C. The weighted
planefound shownwith arotatedversionof theinverteddata
points. D. Thespherefit from this singleiteration.

whena correlation line wasfit to theleastsumsquarefits in
bothspaces,the s%! valuecalculatedwas0.23.

This low st! value can be attributed to the following:
points very closeto the inversion point but slightly off the
spherebeingsearchedfor will endupveryfarawayfrom the
planein the inversive space. This large distancecanskew
the planefit. Thesolutionis to assignthe pointsa weight-
ing basedon their distancein the normalspace.However,
an ideal weighting schemewas not found from the geom-
etry, andseveral options weretestedempirically. The best
weighting schemeweights eachpoint by n�uE where n,E is the
distancein thenormal spacefrom theinversionpoint.

Thisweighting changesthesetupof thematrix to solve in
stepc. Theproblem is now a weightedleastsumof square
plane fit, but can be solved without asymptotically more
work. The s ! valueof thecorrelation betweentheweighted
sumof squaresfit of theplaneto thesumof squaresfit of the
sphere usingthe n�uE weightingschemewas0.9252,which is
notperfectandsuggeststhereis roomfor improvement.
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The secondalgorithmusesa stereographic projectionalso
known asa Riemannsphere transformation. The transfor-
mationmapsa n -dimensionalspaceto a n U b -hypersphere.
In  ep , thetransformedpointsall lie to a4-spherecenteredat
theorigin with a radius J :

let f ` D�! U F�! U H�! then NXD?>6F�>AH�S KM| !A}~
�?� > !A�~
�?� > !6�~
�?� > ~]�V�~
�L���
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The key property taken advantageof in this algorithm is
that pointson a spherein the n -dimensional normal space
will lie ona n -dimensional sphereon the n U b -dimensional
hypersphere. In thecasepresented, points on a 3-sphere in p will lie on a 3-sphereon the4-spherein thetransformed
space.This 3-spheredefinesa unique hyperplanein  �u , and
canbeeasilyfoundagainusingthetechniqueof leastsquares
fitting to ahyperplane.

The assumptionmadehereis againthat points closeto
a spherein the original spacewill lie closeto a spherein
the transformedspace.Again, this is not completelyaccu-
rate,aspointsvery far away from the origin mapto points
very similar, while pointscloseto theorigin couldskew the
planefound. We usea weightingschemederived for the2-
dimensional caseof circle fitting of �Ab U n�!EI� ! , where n,E is
thedistancein normal spacefrom theorigin [6]. We tested
several otherweightingschemesexperimentally andfound
thisoneto havethebests�! valueandshowing good correla-
tion betweentheproblemsin eitherspace.

For this algorithm, pointsmustbeshiftedsothatthey are
closerto theorigin, sinceif all pointsarefar from theorigin,
they will map to nearly the samepoint in the transformed
space.With theseconsiderations in mind, we canwrite an
algorithm:

1. Considerany setof points ^ to find theleastsum
of squaressphereof.

2. Shift all points in ^ sothat theorigin lies at the
average of thepoints.

3. Transform points onto the n U b -dimensional
Riemannsphere.Let Jg`�b .

4. Giveeachpointaweightaccording to � b U n !E]� !
wheren,E is thedistancefromtheorigin in normal
space.

5. Setupandsolve theweightedmatrix to find the
normal to the
planethatbestfits thetransformedpoints.

6. With the normal,andthe distancefrom the hy-
perplane,directly solve for thecenterin normal
space.

7. Findthebestradiusastheaveragedistancefrom
thecenterto all thepoints.

8. Output thefoundcenterandradius.

This algorithmis straightforward, andeasyto codewith
an eigensystem solver. The overall time complexity isklNOm��]NXn U b]S ! S , againwhere m is the sizeof the input andn is the dimension. It is generally betterthanthe previous
algorithm in termsof thecomplexity, sinceit tradesanorder
of magnitudein termsof theinput sizefor thesmallpenalty
of a slightly bigger matrix to setupandsolve. In effect this
algorithm solvestheproblemby takingit upadimensionand
trasforming the answerbackdown. This is only doneonce
whereastheinversivealgorithm loops overeverydatapoint.

Figure2: TheRiemannalgorithm in  p . A. Thedatapoints
in darkgray. B. Thepointstransformedontothehypersphere
with linesconnectingtheoriginal andtransformedpoints.C.
The points (with dimension4 shown asgrayscale)on a 4-
sphere. D. The weightednormal found. E. The final least
sumof squares fit spherefound by thealgorithm.
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Thesethree algorithms were implemented and compared
usingJava, Java3D for vector mathandvisualization,and
JAMA to solveeigenvaluesandeigenvectors. Weonly tested
our resultsfor nR`�� . We wereencouragedby goodresults
for the n�`�� caseof the WeightedRiemannSpherealgo-
rithm doneby Strandlieet al. [6], andmany implementa-
tions of the iterative procedure[5, 3]. Our goalwasto test
theefficiency andaccuracy in thethreedimensional case.

Our samplepoint setswere roughly between1 and 10
units acrossin any dimension. This producedgood results
whenusinginversion or Riemannspheresof radius1. Fur-
thereffectof theradius ontheaccuracy shouldbeevaluated.

Two exampleruns of the algorithms presented hereare
shown in Figure1 and2. Again, theseexamplesarefor the p case.

We compared both the accuracy and speedof the three
algorithms. In our implementationof the non-linear itera-
tive procedure, the centerwas assumedto have converged
if it did not move in any direction by more than0.000005
units. While this valuemayseemhigh, it did resultin run-
ning times that werepractical. Also, only 2 restartswere
used,with thesecondforcedto startin theoppositedirection
of thefirst. Thisalongwith amaximum numberof iterations
setto 10000 allowedthealgorithm to report good resultsin
reasonable time. Moreaccurateimplementationscouldslow
theoverall running time.

No algorithmasimplementedperformedconsistentlybet-
ter thantheothertwo. For low numbersof points,theInver-
sive andRiemannalgorithmsperformedequally well, while
the non-linear iterative algorithm did not matchthe perfor-
mance.For largenumbers of points, theInversive andNon-
linearalgorithms performedequallywell, andthe Riemann
algorithm hadmuchworseaccuracy. Theeffect of Riemann
sphereradiusbeinglargermayimprovetheaccuracy in cases
wherethenumberof pointsis large.

In termsof speed,the asymptotic boundsshown for the
Inversive andRiemannalgorithms wereverified. TheNon-
linearalgorithm, though having notheoreticalupperbounds,
didexecutefasterthantheInversivealgorithm. TheRiemann
algorithm grew linearly in thesizeof theinput,asexpected,
andwas much fasterthan the other two algorithms, at the
expense of being lessaccurate(as implemented) for large
numbersof points.
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Thetwo algorithmspresentedhereasoptions to anon-linear
iterative procedurehave beenshown to work in testcases,
andfurtherwork couldmake themgenerallyuseful. A bet-
ter weightingschemederivedanalyticallyfrom theproblem
wouldbeagreatimprovement, aswouldbethetestingof the
effectof varying thesphereradiususedin thetransformation.

Another possibility is to attemptto usethe fastRiemann

algorithm asa bestguessfor thenon-linearprocedure,with
thehope of converging quickly to theglobal minimawhich
corresponds to theleastsumof squaresfit sphere.

In termsof dimension, thesealgorithms have favorable
timecomplexities. Othershapefitting algorithmsfrom com-
putational geometry typically have complexities thatareex-
ponential in terms of n [4]. Thesealgorithms only have
quadraticcomplexities,whichcouldbeusefulin highdimen-
sionalcases.

Therearemany otherdirectionsfor futureresearch. Trans-
formationsfor othershapefitting problems, like ellipsoids,
couldbeexplored. Also, insteadof theleastsumof squares
fit, a leastmediansquaresfit couldbeexplored.
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