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Algorithms for Bivariate Zonoid Depth
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Zonoid depthis anew notionof datadepth proposedby Dy-
ckerhoff et al [DKM96]. We give efficient algorithms for
solvingseveral zonoiddepthproblemsfor 2-dimensional(bi-
variate)data.� ��� ��	�������������� �
Datadepthmeasureshow deepor centrala givenpoint � in�! 

is relative to a given datacloud or a probability distri-
bution in

�" 
. Someexamples of datadeptharehalfspace,

simplicial,convex hull peelingandregressiondepths[Raf].
Givena setof points #%$'&)(+*-,.(0/1,323242�,5(�6�7 in

� / in gen-
eralposition,8:9<; #>=?$ @ 6A BDC *FE

B ( B"G�HJI E
B!ILK , 6A BDC *+E

B $ KNM
is calledtheconvex hull of pointsin # . ButO"P ; #>=?$ @ 6A BDC *FE

B ( B G�HJI E
B I K

QSR K , 6A BTC *+E
B $ KNM

is calledthezonoidof depth
Q

or
Q
-zonoid. Sincea zonoid

is definedby a set of linear constraints,it forms a convex
polygon.Furthermore,for

Q *VU Q / , the
Q * -zonoid is asubset

of the
Q / -zonoid, hence& K ,324232�,)WX7 -zonoidsarenested.For

otherpropertiesof zonoids, seeDyckerhoff et al [DKM96]
andMosler[Mos02].

Now, thezonoid depthof a point ( is definedasthemax-
imum

Q
for which ( lies inside

OYP ; #>= . Dyckerhoff et al
[DKM96] give analgorithmto computethedepthof a point
in a datacloudof fixeddimension Z by solvinga linearpro-
gramin thevariables E *-,4232423, E 6 . To obtainanefficientalgo-
rithm, they make useof thefact thatmostof theconstraints
onthe E

B
’s areindependentof # . However, therunning time

of theiralgorithm is unclear.
In this paper, we exhibit a relationship betweenzonoids

and
Q
-sets.Using this relationship,we develop efficient al-

gorithms for computing a
Q
-zonoid, all

Q
-zonoids for

K<I
Q I W andfor computing thezonoiddepthof a point.

The remainder of this paper is organizedas follows: In
Section2, we discusstherelationship betweenzonoiddepth[
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and
Q
-sets. In Section3, we give algorithms for computing

a specificzonoid, computing all zonoids,andcomputing the
zonoid depthof apoint.] ^ 	��0_0`a	b��� `1�c��dfeX� � �N���N�
Givena set # of W pointsin general positionandan integer
HgI Q I Wihkj , a set #!lYm'# is calleda

Q
-set if #"l has

Q
points in it andthesecanbe separatedfrom the remainingWnh Q points of # with a straightline.

Consideraset # of W points.If weconstruct all possible1-
setsof # , we obtainthevertices of the

8:9S; #>= , represented
by the thick points in Figure1. By joining all such1-set
points, we get thezonoidof depth 1 or 1-zonoid or

O * ; #>= ,
and

O * ; #>=?$ 8:9<; #>= .
Now, on the sameset # , constructall possible2-sets.In

each2-set,takethemean(representedby theX onthedotted
line segment joining 2 points in each2-set)of the pair of
points. By joining all suchmeans from all 2-setsof # , we
obtaina 2-zonoid of # or

O / ; #>= asin Figure2. In a similar
fashion, zonoids up to depthW canbeconstructed.

Figure 1: 1-setson # andthe1-zonoid

Lemma 1 For any integer

KoI Q I W , there is a bijection
betweentheverticesof

O?P ; #>= andthe
Q
-setsof # .

Proof. Weshow thattherelationshipbetween
Q
-zonoid ver-

ticesand
Q
-setsis bothone-to-oneandonto.

One-to-one:Considera
Q
-setin a set # of W points.AllotE

B $ *P to eachpoint in this
Q
-set. This is in accordanceto

thedefinitionof a
Q
-zonoid in Section1. Then p 6BDC * E

B ( B is
themeanof thepointsin the

Q
-setaswell asanextremepoint
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Figure2: 2-setson # andthe2-zonoid

of
O"P ; #>= in thedirectionperpendicularto theseparatingline.

If wetakeadifferent
Q
-setanddoasabove,wegetadifferentQ

-zonoid vertex. Also, two
Q
-setsarenot madeup of the

samepoints. So different
Q
-setscorrespondto different

Q
-

zonoid vertices.
Onto:A

Q
-zonoid vertex is extremein somedirectionand

is themeanof thepoints in the
Q
-setseparatedby a line per-

pendicular to thatdirection. qr ��s tN�a	�� �3uNvw�Vdb�a	Yx�� � �N���y�N`a_a�3u
We now givealgorithms for variouszonoid depthproblems,
basedonLemma 1.r�z{� | �1}~���y��� � ����	)������
yQa��x�� � �N���
Thetoppartof Figure3 representstheprimalandthebottom
part,thedual.Theupper(lower)convex hull of points in the
primalcorrespondsto theupper(lower)envelopeof thelines
in thedual. In theprimal, weconstructa

Q
-zonoid, for someQ

. In thedual,this is theshadedregion. Theupperandlower
boundariesof theshadedregion arealsoconvex, becausethe
corresponding boundariesof the

Q
-zonoid in theprimal are

convex.
Eachvertex of the

Q
-level and the

; W�h Q = -level in the
dualmapsto a line thatseparatesa

Q
-setin theprimal. We

constructed the
Q
-zonoid in the primal by finding all pos-

sible
Q
-sets,taking the meanof

Q
points in each

Q
-setand

then joining thesemeanpoints of all
Q
-sets. In the dual,

wefirst construct the
Q
-level (respectively the

; Wwh Q = -level)
andthen,for eachvertex, we draw anupwards(respectively
downwards)verticalraythroughit, andcomputethemeanof
the

Q
lines that intersectthis vertical ray. Suchmeanpoints

are then joined to get the boundariesof the shadedregion
in Figure3. It maybe observedherethat for eachvertex on
theupper(respectively lower)boundaryof thedualof the

Q
-

zonoid, thereis a vertex directly below (respectively above)
it on the

Q
-level (respectively the

; Wnh Q = -level).

�"�

�"�

�f��
� ��

Figure 3:
Q
-zonoid in primalanddual

UsingChan’salgorithm [Cha99b], the
Q
-levelandthe

; W"hQ = -level canbe constructedin � ; W:�T�1�?Wy��W Q��� = expected
time. This algorithm is easilyaugmentedto output the

Q
-

zonoid.

Theorem 2 The
Q
-zonoidcanbecomputedin � ; WV�T�1�?Wn�W Q �� = expectedtime.r�z�] � �0vn_N����� � t�
�s�s�x�� � �N���N�

The relationship between
Q
-zonoids,

Q
-levels and

; W�hQ = -levels allows us to compute all & K ,324232�,)WX7 -zonoids in� ; W / = time by computing all arrangementsof theduallines
[Ede87].

Theorem 3 & K ,324232�,)WX7 -zonoids can becomputedin � ; W / =
time.

Oncewe have computed the & K ,423232�,)WX7 -zonoids,we can
preprocessthemfor point locationusingKirkpatrick’s algo-
rithm [Kir83].

Theorem 4 After � ; W / = preprocessing, thezonoiddepthof
anyquerypoint ( canbecomputedin � ; �D���"W�= time.
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r�z�r � `a_���uy���0vn_N����

����� � ����`
�1� �3��� ��� `a	b�3��� �
Given a set # of W points in general positionanda query
point ( , we want to find out the largestinteger

Q
for which( lies inside

O"P ; #>= . This is theoptimizationversion of the
following decisionproblem: Given a set # of W points in
general position, a querypoint ( andan integer

K<I Q I
W , report whether ( lies insideor outside

O�P ; #>= . We first
concentrateon thedecisionproblem.

ConsideragainFigure3. In theprimal,if thepoint ( * were
to be moved upwards alonga vertical line passingthrough(�* , thentheline ( �* alsomovesupwards in thedual,parallel
to itself. When(�* hitsthe

Q
-zonoidboundary, ( �* alsohitsthe

boundaryof thedualof the
Q
-zonoid. Sincethisboundaryis

convex, line ( �* becomesa tangent to it. This leadsusto the
following idea:in theprimal,draw averticalline through the
point ( * . It intersectsthe

Q
-zonoid at2 points(if thepoint ( *

is outsideandto therightor to theleft of the
Q
-zonoid, thenit

is trivially outsideandneglected). Findingtheseintersection
pointsis equivalent to findingthepointsatwhichthevertical
translationof line ( �* becomestangent to the boundariesof
the dual of the

Q
-zonoid. Oncethey are found, it can be

easilysaidwhether( * is insideor outsidethe
Q
-zonoid by

comparing the � -coordinatesof the intersection pointswith
thatof (�* . Hereafter, we concentrateon finding thatvertex
on theupper boundaryof thedualof the

Q
-zonoid at which( �* is tangent. Sucha vertex on the lower boundary canbe

found in asimilar manner.

Figure 4: Vertical strip � showing the
Q
-level and corre-

sponding upperboundaryof thedualof the
Q
-zonoid

Consideranopenvertical strip � in thedual,asin Figure
4, showing the

Q
-level andthecorrespondingconvex upper

boundary of the dual of the
Q
-zonoid. To find out whether

or not the line ( �* is tangent to someboundaryvertex inside� , we do the following: we count thefirst
Q

lines from the
top intersectedby the left vertical line of � , andcompute
their mean. This actually involvesfinding the meanof the
slopesandinterceptsof theselines(which arethe � - and � -
coordinatesof thepoints correspondingto theselines in the
primal). This gives us the line containing the segmentof
the upper boundaryof the dual of the

Q
-zonoid intersected

by the left vertical line of � . We do similarly for the right
vertical line of � . Now we compare the slopes� * and � /
of the left andright intersectedsegments respectively with

slope ��� of line ( �* . If � * ,�� / I ��� , then ( �* is a tangent
to the upper boundary to the right of strip � . Similarly, if��*-,��4/:� � � , then( �* is a tangent to theupperboundaryto the
left of strip � . But if ��* R � � R �4/ , then( �* is atangent to the
boundaryinsidestrip � . The running time of this checkis� ; W�= , becausewe count

Q
lineson theleft andright vertical

line andcompute their means.Theslopecomparisonis, of
course,done in constant time. Hencewe have thefollowing
lemma.

Lemma 5 If � is an openvertical strip in thedual, wecan
findout whetheror not this strip contains theboundary ver-
tex at which ( �* is tangent,in � ; W�= time.

Lo etal [LMS94] giveanalgorithm for hamsandwichcuts
by looking for a specificpoint on themedianof anarrange-
mentof lines. Themain tool required by their algorithm is
a method to determine whetherthepoint in questionlies to
theleft, right or in avertical strip. Combining Lemma5 with
theiralgorithm givesusthefollowing theorem.

Theorem 6 Givena set # of W points in theplanein general
position, an integer

K¡I Q I W anda querypoint ( , wecan
findout in � ; W�= timewhetheror not ( lies insideor outside
the

Q
-zonoid

O P ; #>= . More generally, we can computethe
intersectionof

O P ; #>= with anyline in � ; W�= time.r�z�¢ � `a_���uo���0vn_N�a��

����� � �fd���s�s � `
	b�3��� �
To compute the depthof a point we make useof a general
technique dueto Chan[Cha99a] which requires (a) a deci-
sion algorithm and (b) a decomposition into subproblems.
Thedecisionalgorithmcomesfrom Section3.3.Wenow de-
scribethedecompositionof ourprobleminto subproblems.

Givena setof points #�$�&)(+*£,5(�/�,4232324,5(�6�7 in general po-
sition anda set of weights ¤¥$¦&4¤§*-,)¤¨/�,324232�,)¤Y6�7 where© $ªp 6BDC * ¤ B , a weightedzonoidof depth

Q
is definedas

O P ; #X,�¤�=?$ @ K
© 6A BDC * E

B ¤ B ( B"G�HJI E
B>I K

Q , 6A BDC * E
B $ KNM

We partition our problem into 4 subproblems#�*�,�#«/1,�#«¬ and #«­ as follows: we first partition the set# of W points into 4 quadrants ®¯*-,�®§/�,�®§¬ and ®c­ , each
containing roughly 6 ­ points, using Megiddo’s algorithm
[Meg85]. Subproblem # * contains3 consecutive quadrants,
say ® * ,�® / ,�® ¬ , and a single point whoseweight is the
weighted averageof all thepointsin ® ­ . So # * has ¬)6­ � K
points. Wedefinethesets# / ,�# ¬ and # ­ in asimilarmanner.
We define Z�°�(0±�² ; (�,�# B = as the zonoid depthof point ( in
problem # B . We solve the subproblemsrecursively. Note
that this merging producesa strictly smaller zonoid, i.e.O P ; # B ,�¤�=¨m O P ; #>= .
Lemma 7

a. Z
°�(N±�² ; (+,�# B = I Z
°)(0±�² ; (�,�#>= for each

K:I´³"I�µ
,
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b
¶
. Z
°�(N±�² ; (+,�#>=!$%·¹¸�º�&£Z
°)(0±�² ; (�,�# B = G�K:I´³>I�µ 7

»�¼!½�¾�¿�À
Á Â

»fÃf½�¾V¿

Figure5: Partitioning the
O P ; #>= zonoid into triangles

Proof. Part a follows from the observation that
O P ; # B =�mO P ; #>= . To seewhy Part b is true, suppose Z�°�(N±�² ; (+,�#>=Ä$Q

and partition
O P ; #>= into triangles by drawing segments

joining
O 6 ; #>= to eachof the vertices of

O P ; #>= , as shown
in Figure5. The point ( lies in oneof thesetriangles,say
with vertices

O 6 ; #>=�,�Å and Æ . Thepoints Å and Æ correspond
to two

Q
-setsthat have

Q h K
points in common. Indeed,

therearetwo infinitesimallycloselines ÇbÈ and Ç5É suchthat Ç.È
definesthe

Q
-setfor Å and ÇbÉ definesthe

Q
-setfor Æ . SinceÇbÈ

and Ç É areinfinitesimallyclose,they intersectat mostthree
of the quadrants ® * ,3242324,�® ­ . Wlog supposethey miss ® ­ .
Thenit is nothardto seethat

O P ; # * = hasÅ and Æ asvertices.
Furthermore,

O P ; # * = contains
O 6 ; #"= and is convex, so it

contains ( . Therefore Z
°�(N±�² ; (�,�# * = I Q $ÊZ�°�(0±�² ; (�,�#"= as
required. q

This satisfiestherequirementsof Chan’s optimizational-
gorithm [Cha99a], andtherefore yields the following theo-
rem.

Theorem 8 Givena set # of W pointsin theplane in general
positionand a querypoint ( , we can find the largest

Q
for

which ( lies inside
O?P ; #>= , in � ; W�= time.�f��Ë � �1}:s `��Nt�vÄ` � �
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