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Continuous Foldability of Polygonal Paper

Erik D. Demaing Satyanl_. Devadoss

Abstract. We prove that ary given well-betaved folded
stateof a pieceof pape canbe reacked via a continwous
folding processstartingfrom the unfoldedpaper andending
with the folded state. The argumentis an extersion of that
originally presetedin [DMO1].

1 Intr oduction. In definingan“origami” or “folding” of
apieceof paperthereis adistinctionbetweerspecifying the
geonetry of thefinal folded state(a singlefolding, e.g.,an
origami crane)and specifyirg a contiruousfolding motion
from the unfolded sheetto the final folded state(an entire
animationof foldings). It is coneivable that somefolded
stateexists, but thatthe pieceof pape could not reachthat
statevia a continwus folding process,e.g., the statecould
only be reachedby passingportiors of the pager through
itself, or by cuttingandregluing.

Our mainresultis thatin factevery well-behaed folded
stateof a simplepolygonalpieceof papercanbereachd by
a contiruousfolding motion andsothe entireconfiguration
spaceof all well-behaedfolded statesf a pieceof paperis
conrected.As a consegance otherresultsthatdefinefold-
ings with specific properties neednot distinguishbetween
folded statesand contiruousfolding motions, and can use
themoreconvenien specificatiorof asinglefoldedstate.

The sameresult as ours was establishedn [DMO01] for
the specialcaseof a rectanglar pieceof paperandafolded
statehaving a flat patch Here we extend the resultto an
arbitray simple polygonal pieceof paperandto any well-
behaed, possiblyentirely curved, folded state,in addition
to formalizing definitionsandaddingdetailto the prod-.

2 Definitions. We believe that researchin mathemécal
origami hasbeensomeavhat hamperedby lack of clear, for-
mal foundation so we devote a relatively lengthy section
to this topic beforeturning to the prods. At a high level,
our definitions genealize Justins definition of flat folded
statedJus94.
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2.1 Folded States: Overview. A pieceof paper P is a
closedsetdefinedby a simpleplanarpolygon (i.e., theinte-
rior and bourdary of that polygon). A folded state (f, \)
of P is an isometric function f : P — R3 mappimg
P into Euclidean3-spacetogetter with a partial function
A: P? — {—1,+1} specifyirg thelocal “stackingorder” of
pairsof pointsin contact.Thepair (f, A\) mustsatisfyseveral
condtions, detailedbelow. First, f mustbeisometricin the
sensehatthe intrinsic gealesic(shortest-pth) distancebe-
tweenary two pointsof P is thesamewhenmeasureaither
on P or onthefolded stategeomety f. Thusthepaperdoes
not stretchor shrinkwhenmappedy the folded state.One
consegenceof beingisometricis that f mustbecontiruous
meaiing thatthefoldedstatedoesnottearthepaper Second
A mustbe symmetri¢in thesensehatit consistentlyassigns
theorde of ¢ with respecto p andtheorde of p with respect
to ¢, transitive sothatwe obtaina consistentotal orde on
several pointsin conta¢, andconsistentin the sensahatit
assignghe sameordeing to nearly pairsof poirts in con-
tact. Third, (f, \) mustbe norcrossingin the sensehatthe
pape doesnot crossitself whenmappeddy thefolded state.

2.2 Well-Behaved Folded States. We placea piecavise-
smootimesgestrictiononthegeoméry f of thefoldedstate.
Specifically f is well-behaed of order & if it is piecavise-
C*, i.e., P canbedeconposednto afinite numker of open
setsRi,Rs,...,R, C P, with U;R; = P, suchthat f
hascontinwousderivativesup to order k oneachR ;, andthe
bowndary of eachR; consistsof finitely mary C* cunes.
For most of the resultsin this paper we needonly well-
behaednessof order 1, so that we can define a tangent
planeat everyinterior point, but for oneproofwe needwell-
behaednes®f order2, soweassumehis propertyof f from
now on. We call all boundarypoints of U; R; creasepoints

2.3 Folded States:Isometry. A foldedstate(f, A) is iso-
metric in the sensethat, for ary two points p,q € P, the
geodsic distancebetweenp andgq is the samewhenmea-
suredon either P or the foldedstategeomety f. (The
isometryconditionis independentof A.) The geodesicdis-
tancebetweerp andq on P is thelengthof a shortespath:
inf {arclengthC | curve C : [0,1] - P with C(0) =
p,C(1) = ¢}, wherearclength C is definedas usualas
ftlzo | £C(t)||dt, and|| - || dendesthe Euclideamorm. The
geocesic distan@ betweenp and ¢ on the folded-statege-
omety f is the length of a shortestpath, wherelengthis
measued aftermappirg the curve ontothe surfaceby com-
posingwith f: inf {arclength(f o C) | curve C : [0,1] —
P with C(0) = p,C(1) = ¢}. Notethatevenif f foldsC on
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top of itself, this definitioncapturs thelengthappragriately.

2.4 Folded States: Order. For two distinct noncease
pointsp # ¢ of P mappedinto cortact by f andhaving
neighborhamdsthataremappednto contactby f, A(p,q) €
{+1, -1} definesa “stackingordef onp andg. The par
tial function X is undefinedat (p, ¢) in all othercasesMore
precisely A(p, q) is definedfor two points p,q € P pre-
ciselywhen(a)p # q, (b) p andq arenonceasepoints of f,
(©) f(p) = f(q), and(d) thereareneigtbortpodsN,, of p
andN, of g (in P) suchthat f(N,) = f(N,). In particdar,
A(p, q) is definedpreciselywhen(q, p) is defined.

Intuitively, A(p, ¢) specifiesvhetherg is above (+1) orbe-
low (—1) p with respecto thesurfacenomal of f atp. Note
that f doesnot provide this topolagical informationbecase
f(N,) = f(N,); we needto separatelykeeptrack of the
ordeing relationbetweersuchpointsin contact.

A mustsatisfythreecondtions:

Symmetry. Letn(p) derote the surfacenormal vecta of
f atanonceasepointp € P. Intuitively, the directionof
this surfacenormal specifieswhich side of the surfacewas
originally the top side of the pieceof pager. The symme-
try conditian constrais ary two pointsp,q € P for which
A(p, q) is defined. If n(p) = n(q), i.e., the neigtborhamds
N, and N, areorientedthe samethenA(p, q) = —A(g,p).
Otherwisen(p) = —n(g), i.e., the neightorhaodsare ori-
entedoppositely andthenA(p, ¢) = A(g,p). SeeFigure 1.
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Mp, ) =—1
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AMp, q) = +1 Mp, ) =-1
Mg, p) =+1 Mg, p) =-1

Figure 1: Symmetryof A.

T

Transitivity. The transi-
tivity condtion constrains
the relationship among
three points p,q,r € P

a

in contac. If Ap,q) P @

and A(g,r) are defined Ao gy =41 A, ) = +1
and Mg,p) = —Alg,7), Mo.p)=—17  Ma.p)=+1]
then A(p,r) is defined Ma, r)=+1 Mg, r)=~1
and A(p,r) = A(p,q). AMp, )=+ Ap, r) = +1
Intuitively, the condition Figure 2: Transitiity of A
Ag:p) = —A(g,r) spec- s Yo

ifies that p and » are on

oppaite sidesof ¢, andthe corsequence\(p,r) = A(p, q)
specifiesthat r is relatedto p in the sameway asq. See
Figure2.

Consistency The consisteng condition corstrains ary
two pointsp,q € P for which A(p, ¢) is defined. For ary
conrectedneighorioods V,, of p and N, of ¢ for which

f(Np) = f(N,), andfor ary pair of points p € N, and
G € N, forwhich f(p) = £(q), we hare A(5,q) = A(p,q).
Intuitively, this condtion specifiesthat the entire region of
contat surroundingp andg is consistentlyordered.

2.5 Folded States: Noncrossing Intuitively, the non
crossingconditian enfacesthatportions of pape& thatcome
into conta¢ geanetrically do not propgerly cross. Whenthe
contat betweenlayersoccus in a two-dimersional region
(open set), A armsus with additioral order informationto
disamliguatethe geomdry. Whenthe contactoccus in a
zero-or one-dmensioral region (non-openset),the geone-
try itself is sufficient to disamliguatethe ordeing.

1D. We startwith the definition of the noncossingcond-
tion in the caseof folding a onedimensioml pieceof paper
P (aline sggment,or equvalentlyaninterval of R) into R2.
For eachpointg in R?, we constrairthelocal behavior of the
folded-statedmage f(P) arownd the point ¢q. Theideais to
look at portions of paperthatcometo this point,andensure
that conrectionsbetweertheseportions at this point do not
crosseachother The mainissuehereis how to definethe
notion of aconnetion.

Considera point p € P for which f(p) = ¢. Thelocal
behaior of f nearp canbe characteried, evenwhenp is
a creasepoint, by measurig the unit direction vecta from
f(p) to f(p + 0), andtheunit directian vectorfrom f(p) to
f(p—9), asé — 0. By the analgouswell-belavednes
assumptia for 1D thattherearefinitely mary creasepoints
betweenwhich f is C*, theselimiting directiors are well-
defined If f is C! atp, thenin factthe two diredions are
negationsof eachother; in generalthey correspad to the
left andright derivativesof f atp with the left onenegated.
The two directionvectas canbe mapped to two points on
theunit circle C.

We view theinteriorof theunit circle C asaninfinitesimal
expansionof the behaior atq. Thetwo pointson € corre-
spordingto p sene asconrectionsbetweerthislocalbeha-
ior andtherestof the folded stateimageaway from ¢q. We
reqgure thatthelocal behaior within C conrectsthesetwo
points by a cure, corresponéhg to aninfinitesimalstretch-
ing of the point p of paper Considerig all pointsp € P
for which f(p) = ¢, we obtaina collectionof pairsof points
ontheunit circle C, whereeachpair mustbe conrectedby
a curve within C. SeeFigure4(a) The norcrossingcon-
dition requres that thesecurve conrectionscan be made
without crossingsequialently, therecanna be four points
p1, D2, P3, pa in cyclic orderarourd € suchthatboth(py , ps)
and(ps, p4) appearaspairsin thecollection.

Onedetailremairs: we mayobtainmultiple copiesof the
samepoint on the unit circle C, andthe nongossingcon-
dition requires that thesepoints be distinctly ordeed (dis-
ambiguated)arownd the circle. Without loss of geneality,
supmsethat, for i € {1,2}, p; € P, f(p;) = g, andthe
unit directionvecta from f(p;) to f(p; + &) apprachesv
asd = 0.1f f((p1,p1 +¢)) # [(p2,p2 +¢)) foralle >0,
thenthelocal divergercefrom v of thedirectionsfrom f(p1)
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(a) 1D pieceof pape.

(b) 2D pieceof pape.

Figure 4: lllustration of local noncrossingbehaior arourd a
point g (the centerof thecircle or sphere).

to f(p1 +¢) andfrom f(p) to f(p2+¢) (for smallenaighe)
specifiesageonetric ordeing onthetwo copiesof v arownd
theunitcircle C. Otherwise f((p1,p1 + €)) = f((p2, 2 +
¢)) for somes > 0, in whichcase\(p; + z, p2 + ) provides
aconsistenvalueof +1 or —1 for all z € (0,¢). Inthiscase
we usethe A value to detemine the order of the two copies
of v arowndtheunit circle: asz — 0, n(p; + z) appoaches
oneof the two unit tangem vectos to the unit circle C atv
(see Figure 3), and

A(p1 + z,p2 + x) Spec- n(py+x)

ifies whether py’'s copy .

of v should be in that : A

direction (+1) or in the L —
oppaite direction (—1) P2

from py's copy of wv.
By transitvity of A, this
definition provides a
consistent total orde
amorg all copesof apointv with definedpairwise values,
whichin turn aretotally orderedaccordng to the geametry.

Figure 3: f(p1) = f(p2)
g and f((p1,p1 + €))
f((p2,p2 +¢)) for somes > 0.

I

2D. Finally, we definethenorcrossingconditionfor folded
statesof a two-dimensionalpieceof pape P folded in R3.
As befole we constrairthelocal behaior of thefoldedstate
imagef (P) aronndeachpoirt ¢ in R?. Thislocalbehaior is
charactezdby, for eachpointp € P for which f(p) = q, the
unit directionvectas from f(p) to f(p + ev) ase — 0 over
all unit vectas v in R?. (Theseunit direction vectas are
the normalized directioral derivativesof f at p.) For each
p interior to P, thesevectos give us a closedcurve on the
unit sphee S; andeachp on the boundaryof P givesusan
opencurve on S. Eachclosedcurve canbe parameerized
asafunction from theunit circle C of directiors in R2 (cor
respoiing to v) to points on the unit sphereS‘; similarly,
eachopencurve can be paraneterizedas a function from
theunitintenal [0, 1]. Thusthe pictureon the sphereS can
be viewed asthe union of finitely mary folded statesof 1D
piecesof paper excep thatsomepiecesof pager arecircles
insteadof line segmerns andthe folding spaceis a sphere
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insteadof the plane;seeFigure4(b). Our definitionof 1D

norcrossingcondtion trivially genealizesto this multicom

porentcircularsphericakcenarioThe2D nonaossingcon-
dition at ¢ is exactly the 1D nonaossingconditionon these
folded statesappliedto every pointontheunit sphereS'.

2.6 Folding Motions. Let Foldp dende the set of all
folded states(f,A) of P. A folding motionis a contin
uous function M : [0,1] — Foldp, wherethe agument
t € [0,1] represetstime. Let F and A denotecorrespad-
ing functions from [0, 1] thatreturn f and X, respectiely:
M(t) = (F(t),A(t)). Contindty of M with respectto ¢
consistof two parts:contiruity of F' andcortinuity of A.

Time continuity of geometry Continuity of F' is definel
in the usualway: for every ¢ > 0, thereisaé > 0 such
that |ty — t2| < & impliesd(F(t1), F(t2)) < €. However,
for this definitionto make sensewe needa metricd onthe
geonetriccompament f of foldedstates.

For two suchfoldedstategeonetries f; and f», define
their distanced(f1, f2) by d(f1, f2) = suppep [lf1(p) —
f2(p)|]- Thus we measue distanceas the maximun Eu-
clideandisplacemenof a pointin P whencompaing how
thatpointis mappedy thetwo folded-stategeometies.

Time continuity of order. Contintty of A constrainary

two poirts p, ¢ € P andtimet € [0, 1] for which A(t)(p, q)

is defined. We corsiderthe possibledepartue of ¢ from p

astime increasesthe possiblearrival of ¢ at p is symmet-
ric (e.g, by reversingtime). Let N(¢)(p) denotethe surface
nomal vectorof F'(t) atanoncrasepoint p € P. Thenwe
have oneof thefollowing two condtions:

1. Departurecase: (4 F(t)(q) — £ F(t)(p))-N(t)(p) is
strictly positive if A(t)(p,q) = +1 andis strictly negative if
A(t)(p, q) = —1. Thederivativeis takenwith respecto time
intenals on the positive sideof ¢, i.e., (t,t + ¢). Intuitively,
this condition ensureghat ¢ instantaeouslydepaits on the
correctsideof p, asspecifiedby A, in the sensehatthethe
relative motionvectorof ¢ with respecto p hasa correctly
signeddot product with the normal vectorat p.

2. Contact case: For every ¢ > 0, thereisad > 0
suchthat, for every At € [0, 4], thereis a point ¢’ within a
disk of radiuse centeedat g for which A(t + At)(p, ¢') is
definedand A(t + At)(p,q') = A(t)(p,q). SeeFigure5.
Intuitively, there
is a point ¢’ arbi- r&yq p&q g
trarily closeto g @ @

t.fip)=fa) 1+ AL fip) =fig)
<>

suchthatp comes
Figure 5: After time At, a point ¢’

in contactwith ¢’
aftera sufficiently
within e of ¢ remainsin contactwith p.

smallmotion and
the ordering of
that contactis the
sameasthatof p andq attime¢.

3 Rolling betweenFlat Folded States. We now procee
to the proof of our mainresult. Thefirst partclaimsthatwe
can‘“roll up” P into atriangle. This motionwill useonly
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flat folded states.A foldedstate(f, A) is flat if thethird (z)
coordnateof f is alwayszera Thesilhouetteof aflat folded
statef is theimagef(P) of thefolded stategeonetry.

Lemmal LetT C P bea triangle that doesnot intersect
any diagonal of sometriangulation of the simplepolygmal

pieceof paper P. Thenthere is a cortinuousfolding of P

from the unfoldel stateinto a flat statewhosesilhouetteis

conguentto T', sudh that the intermedide foldedstatesare

flat, havefinitelymanycreasesandare nestedy subsebver

time

c
G a
b j

(b) a notacute

(a) @ andg bothacue.
Figure6: lllustrationof the proof of Lemmal.

Prodf sketch. We repeately remove an earnot contairing
T from the trianguation of P, by continwusly rolling the
earontoitself until it fits within P asshovnin Figure6. O

4 Unfurling onto the Target Folded State. We arenow
prepaedfor themaintheoem:

Theorem?2 If (f,)) is a foldedstateof a simplepolygmal
pieceof paper P thatis well-behaed of order 2, thenthere
is a continwusfolding motionof P into (£, ).

Figure7 providesa préciseof the prod.

M(t)
C ——
P=P(0) P() P(1)

=B |

Figure 7: The constructionof a continuots folding motion of P

into f (nottoscale).S = f(P) is theimageof thefolded state.W

is the continuousfolding motionthatwrapsT ontoits home f(7T’)

on S. M is themotionthattakes P to aflat folded stateT” within

the plane. (The origamibird is basedon a designby L. Zamiatina
athttp://documents.alfram.com/\/MainBook/G.2.28.html.)

Prod. Let (f,\) be afoldedstatewith imageS = f(P).
Fix sometrianguation of P; f mapsits diagoralsto curves
on S. We now locatea triangleT in P (not necessarilya
triangleof thetriangulation),mappirg to a patchf (7") on S,
thatsatisfieghesepropeties:

P)=8

-

Fo M(1-)

1. Theinterior of T avoidsall triangulation diagorals.

2. Theinterior of T' avoidsall creasepoirts.

3. Ther s adirectionin which the orthagonalprojectin

of f(T) is nonself-overlappng.

It is easyto achieve the first two propertiesby selectinga
suitablysmalltrianglein P. Any suchpatchis adevelgpable
surface and“torsalruled” whichmearsthatit maybeswept
out by lines geneated by a well-behaed cure [PWO01,

p. 32§. Thatthe patchis C? sufiicesto ensurethata small
enowgh piecewill have a non-oveldappingprgection. The
ruling of the patchcanbeusedto obtaina a contiruousfold-

ing motionW (t) thatwrapstheflat triangleT” ontothispatch
f(T) of S. For examge, onecouldbendtheruling lines of

theruledsurfacef(T"), interpolatirg from a straightsegment

to thegenerting curwve of theruling.

Now we apgdy Lemmal to obtaina continwus rolling
motion M from P to T', with eachM (t) = (F(t), A(¢)) flat,
F(0)(P) = P,andF(1)(P) = T. If wethenapplythemo-
tion W (t) = (W (t) o F(1),A(1)), we bring the multilayer
flat folding of P fromT"to f(T').

The last step of the constrietion is to “unravel” f(T)
onto S. Onecanimagire S as a virtual scafold, as de-
pictedin Figure 7. The unraveling of f(T') reversesthe
motion M (t) by consideing M (1 — ¢t) for ¢t € [0, 1], but
ratherthanprogessingthroudh the continuun of flat states,
the motion unfurls on the surface S. Thus,at eachtime ¢,
we are compsing the folded state(f, ) with M (1 — ¢).
The geamnetry of this compsitionis simply f o F(1 — t).
The subset-nestingroperty from Lemmal ensureghat f
is appliedonly within its dormain P. The ordeing A;(p, q)
is definedas A(1 — t)(p,q) whenthatis definedand as
AF(1—1t)(p), F(1—1t)(q)) whenthatis defined (Notethat
atmostoneof thesewo alternatess defined;jf A(1—t)(p, q)
is defined,then F(1 — t)(p) = F(1 — t)(q), SOX(F(1 —
t)(p), F(1 — t)(¢)) is unddined.) The noncossingof this
compsedstatefollows from the nonciossingof both (f, A)
and M (1 — t). At the endwe have contiruouslyfolded P
into (f, \). O

Corollary 3 The confguration space of well-behavd
foldedstatess conrected.

Boundng the number of steps(and even defining what
constituts a “step”) in the motion from the flat P to the
foldedstatef remairs for future consideation.
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