The Gaussian Centre and the Projection Centre of a Set of Points in \mathbb{R}^3

Steph Durocher*

David Kirkpatrick[†]

Abstract

We define the Gaussian centre and the projection centre of a non-empty finite set of points $P \subseteq \mathbb{R}^3$. We show the two centres are equal for any $P \subseteq \mathbb{R}^3$.

1 Introduction

Finding a centre point is a fundamental problem of geometry. The Euclidean centre, or centre of the smallest enclosing sphere, provides a natural definition for the centre of a set of points. As shown in [BBKS00] and [DK04], the Euclidean centre of a set of points $P \subseteq \mathbb{R}^d$ is unstable; small perturbations at only a few points of P can result in an arbitrarily large relative change in the position of the Euclidean centre. To define a centre Υ more stable than the Euclidean centre requires, at least for some sets of points, that Υ differ from the Euclidean centre. Presumably, remaining central to Pis desirable. These two factors are in opposition; high stability implies high eccentricity and vice-versa. In [DK04], the Gaussian centre of a set of points in the plane is introduced toward the objective of identifying a good centre that balances high stability with low eccentricty. The projection centre of a set of points in the plane is also defined and shown to be equivalent to the Gaussian centre.

The Gaussian centre's benefits extend beyond its definition as the centre of a set of static points. Recently, several questions of facility location have been posed within the setting of mobile facility location (e.g. [AGG02, AH01, BBKS00, Her03]). Given a set of mobile points, the fitness of a mobile facility is determined both by its eccentricity and also by the maximum velocity and continuity of its motion. As shown in [DK04], the stability of a centre is inversely related to the maximum velocity of a mobile facility, providing further motivation for the need of stability in a centre point.

The question of whether the Gaussian centre generalizes to three dimensions remained open. In this paper we define the Gaussian centre and the projection centre of a set of points $P \subseteq \mathbb{R}^3$. We show the equivalence of the two centres for any non-empty finite set $P \subseteq \mathbb{R}^3$.

Figure 1: the 2D Gaussian centre of P, $\Gamma_2(P) = (\frac{1}{4}, -\frac{1}{4})$

2 Gaussian Centre Definition

Definition 1 Let $H = \{x \in \mathbb{R}^d \mid h_1x_1 + \ldots + h_dx_d + h_{d+1} = 0\}$ define a (d-1)-dimensional hyperplane in \mathbb{R}^d , where $h \in \mathbb{R}^{d+1} - \{(0, \ldots, 0)\}$ is fixed. Let $H^+ = \{x \in \mathbb{R}^d \mid h_1x_1 + \ldots + h_dx_d + h_{d+1} > 0\}$ and let $H^- = \{x \in \mathbb{R}^d \mid h_1x_1 + \ldots + h_dx_d + h_{d+1} < 0\}$ define the respective positive and negative half-spaces of \mathbb{R}^d induced by H. A point $p \in P \subseteq \mathbb{R}^d$ is an extreme point of P if and only if there exists a (d-1)-dimensional hyperplane $H \subseteq \mathbb{R}^d$ with induced partition of \mathbb{R}^d , $\{H^+, H, H^-\}$, such that $H \cap P = \{p\}, P \subseteq H^+ \cup H$, and $P \cap H^- = \emptyset$.

The Gaussian centre was first defined for a set of points in \mathbb{R}^2 [DK04]. The two-dimensional definition provides intuition for the three-dimensional case and we reproduce it here:

Definition 2 ([DK04]) Let $P \subseteq \mathbb{R}^2$ be a non-empty finite set of points. Let $V_P \subseteq P$ be the set of extreme points of P. If $|P| \ge 2$, for every $p \in V_P$, let α_p be the interior angle formed on the convex hull boundary at p. The Gaussian centre of P is

$$\Gamma_2(P) = \frac{1}{2\pi} \sum_{p \in P} w_p p , \qquad (1)$$

where w_p is the Gaussian weight of point p given by

$$w_p = \begin{cases} 2\pi & \text{if } |P| = 1\\ \pi - \alpha_p & \text{if } |P| \ge 2 \text{ and } p \in V_P \\ 0 & \text{if } p \in P - V_P \end{cases}$$
(2)

Thus, the Gaussian weight of a point p on the convex hull of P corresponds to the turn angle at p. The greater the turn angle, the more significant the contribution p to $\Gamma_2(P)$. The turn angles of a polygon sum to 2π , hence the normalizing factor.

In three dimensions, the Gaussian centre of $P \subseteq \mathbb{R}^3$ is again defined as a normalized weighted mean. This time,

^{*}Department of Computer Science, University of British Columbia, durocher@cs.ubc.ca

[†]Department of Computer Science, University of British Columbia, kirk@cs.ubc.ca

however, a point $p \in P$ is adjacent to two or more faces; the Gaussian weight of p is defined in terms of the angles formed at the faces that meet at p.

Definition 3 Let $P \subseteq \mathbb{R}^3$ be a non-empty finite set of points. Let $V_P \subseteq P$ be the set of extreme points of P. If $|P| \ge 2$, for every $p \in V_P$, let F_p be the set of faces that meet at p. For every face $f_j \in F_p$, let $\theta_{p,j}$ be the interior plane angle on f_j at p. The Gaussian centre of P is

$$\Gamma(P) = \frac{1}{4\pi} \sum_{p \in P} w_p p , \qquad (3)$$

where w_p is the three-dimensional Gaussian weight of point p given by

$$w_{p} = \begin{cases} 4\pi & \text{if } |P| = 1\\ 2\pi - \sum_{f_{j} \in F_{p}} \theta_{p,j} & \text{if } |P| \ge 2 \text{ and } p \in V_{P} \\ 0 & \text{if } p \in P - V_{P} \end{cases}$$
(4)

The sum of the plane angles at a point p ranges from 2π (when p is coplanar with its neighbours) and approaches a limit of 0 (when the neighbours of p approach a single point). The three-dimensional Gaussian weights of any polyhedron sum to 4π . Thus, in three dimensions we normalize by $1/4\pi$.

The Gaussian centre is invariant under many affine transformations. Specifically, it is easy to show that $\Gamma(f(P)) = f(\Gamma(P))$ where $f : \mathbb{R}^3 \to \mathbb{R}^3$ is any translational, uniform scaling, or rotational transformation function and $P \subseteq \mathbb{R}^3$ is any non-empty finite set of points.

When vertices are coplanar, a set of points P in three dimensions reduces to the two-dimensional case.

Lemma 1 Let $P \subseteq \mathbb{R}^3$ be a non-empty finite set of coplanar points. The three-dimensional Gaussian centre of P matches the two-dimensional Gaussian centre of P.

Proof sketch. Let $\Gamma_2(P)$ and $\Gamma(P)$ be the respective twoand three-dimensional Gaussian centres of *P*.

$$\Gamma(P) = \frac{1}{4\pi} \sum_{i} (2\pi - 2\theta_i) p = \frac{1}{2\pi} \sum_{i} (\pi - \theta_i) p = \Gamma_2(P) . \Box$$
(5)

3 Projection Centre Definition

The projection centre was first defined in two dimensions [DK04]. Again, we introduce the three-dimensional definition by first presenting its two-dimensional analogue.

Let l_{θ} be the line through the origin parallel to the unit vector $u_{\theta} = (\cos \theta, \sin \theta)$. Expressed in slope-intercept form, l_{θ} is $y = \tan \theta x$. Given a set of points $P \subseteq \mathbb{R}^2$, let P_{θ} be the projection of P onto l_{θ} . See Figure 2A. That is,

$$P_{\theta} = \{ u_{\theta} \langle p, u_{\theta} \rangle \mid p \in P \} , \qquad (6)$$

Figure 2: defining the projection centre $\Lambda_2(P)$

where $\langle x, y \rangle$ denotes the inner product of x and y. The midpoint of P_{θ} is

$$m(P_{\theta}) = \frac{1}{2} \left(\min_{p \in P_{\theta}} p + \max_{q \in P_{\theta}} q \right) , \qquad (7)$$

where max and min return the extrema along line l_{θ} . See Figure 2B.

The projection centre is defined as the normalized average midpoint over all projections of P onto lines l_{θ} . See Figure 2C.

Definition 4 ([DK04]) Let $P \subseteq \mathbb{R}^2$ be a non-empty bounded set of points. The projection centre of P is

$$\Lambda_2(P) = \frac{2}{\pi} \int_0^\pi m(P_\theta) \ d\theta \ , \tag{8}$$

where $m(P_{\theta})$ is the midpoint of the projection of P onto the line $y = \tan \theta x$.

The factor of 2 is necessary since $\frac{1}{\pi} \int_0^{\pi} u_{\theta} \langle p, u\theta \rangle d\theta = p/2$. The factor of $1/\pi$ normalizes for the range of integration.

In three dimensions, we express the projection centre in terms of spherical coordinates. Let $l_{\theta,\phi}$ be the line through the origin parallel to the unit vector $u_{\theta,\phi} =$ $(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)$. Let $P_{\theta,\phi}$ and $m(P_{\theta,\phi})$ be the natural generalizations of P_{θ} and $m(P_{\theta})$ to spherical coordinates in \mathbb{R}^3 , respectively.

The projection centre is defined as the normalized average midpoint over all projections of *P* onto lines $l_{\theta,\phi}$.

Definition 5 Let $P \subseteq \mathbb{R}^3$ be a non-empty bounded set of points. The projection centre of P is

$$\Lambda(P) = \frac{3}{2\pi} \int_0^{\pi} \int_0^{\pi} \sin \phi \cdot m(P_{\theta,\phi}) \, d\phi \, d\theta \,, \qquad (9)$$

where $m(P_{\theta,\phi})$ is the midpoint of the projection of Ponto the line through the origin parallel to $u_{\theta,\phi} = (\cos\theta\sin\phi, \sin\theta\sin\phi, \cos\phi)$.

Note the factor $\sin \phi$ to account for non-uniform density using spherical coordinates, the normalizing factor $1/2\pi$ since $\int_0^{\pi} \int_0^{\pi} \sin \phi \ d\phi \ d\theta = 2\pi$, and the factor 3 since $\frac{1}{2\pi} \int_0^{\pi} \int_0^{\pi} \sin \phi \cdot u_{\theta,\phi} \langle p, u\phi \rangle \ d\phi \ d\theta = p/3.$

Similarly to the Gaussian centre, the projection centre is invariant under many affine transformations. Specifically, it is easy to show that $\Lambda(f(P)) = f(\Lambda(P))$ where $f : \mathbb{R}^3 \to \mathbb{R}^3$ is any translational, uniform scaling, or rotational transformation function and $P \subseteq \mathbb{R}^3$ is any non-empty finite set of points.

Lemma 2 Let $P \subseteq \mathbb{R}^3$ be a non-empty bounded set of coplanar points. The three-dimensional projection centre of P matches the two-dimensional projection centre of P.

Proof sketch. Let $\Lambda_2(P)$ and $\Lambda(P)$ be the respective twoand three-dimensional projection centres of P. Since Λ is invariant under rotation and translation, assume P is coplanar with the xy-plane. For any $p \in P$, p = (x, y, 0) and

$$\int_0^{\pi} \sin \phi \cdot u_{\theta,\phi} \langle (x,y,0), u_{\theta,\phi} \rangle \ d\phi = \frac{4}{3} u_{\theta} \langle (x,y), u_{\theta} \rangle \ . \ (10)$$

Given θ , if p is an extreme point of $P_{\theta,\phi}$ for some $\phi \neq 0 \mod \pi$, then p is an extreme point of $P_{\theta,\phi}$ for any ϕ . Therefore,

$$\Lambda(P) = \frac{3}{2\pi} \int_0^{\pi} \int_0^{\pi} \sin \phi \cdot m(P_{\theta,\phi}) \, d\phi \, d\theta \quad (11)$$

$$= \frac{3}{2\pi} \int_0^{\pi} \frac{4}{3} m(P_{\theta,\pi/2}) \, d\theta \tag{12}$$

$$= \frac{2}{\pi} \int_0^\pi m(P_{\theta,\pi/2}) \, d\theta \tag{13}$$

$$= \frac{2}{\pi} \int_0^{\pi} m(P_{\theta}) \, d\theta \tag{14}$$

$$= \Lambda_2(P) . \Box \tag{15}$$

Unless otherwise specified, we refer to the threedimensional definitions of Γ and Λ . Although $\Gamma(P)$ and $\Lambda(P)$ are defined in terms of a finite set of points $P \subseteq \mathbb{R}^3$, since only extreme points of P affect the positions of $\Gamma(P)$ and $\Lambda(P)$, each definition also applies to the polyhedron induced by the convex hull of P, Q = CH(P). Thus, $\Gamma(Q)$ and $\Lambda(Q)$ are well defined for any convex polyhedron Q.

4 Convex Decomposition

We give an outline of proofs that for both the Gaussian centre and the projection centre, when a convex polyhedron is partitioned by a plane into two convex polyhedra, the relationships between the centres of the two components are identical. The analogous two-dimensional proofs are given in [DK04].

Let \overline{A} denote the closure of set A. Lemma 3 first derives the relationship between the Gaussian centres followed by Lemma 5 which derives the relationship between the projection centres.

Lemma 3 Let $P \subseteq \mathbb{R}^3$ be a convex polyhedral region. Let h be a plane that intersects P. Let h^+ and h^- be the half-spaces induced by h. Let $\Gamma(Q)$ be the Gaussian centre of Q. The Gaussian centres of the components of the decomposition of P induced by h are related by

$$\Gamma(P) = \Gamma(\overline{P \cap h^+}) + \Gamma(\overline{P \cap h^-}) - \Gamma(P \cap h) .$$
 (16)

Figure 3: illustrations supporting Corollaries 4 and 6

Proof sketch. Let w_p , w_p^+ , w_p^- , and w_p^h denote the Gaussian weights of a point p in polyhedra P, $\overline{P \cap h^+}$, $\overline{P \cap h^-}$, or $P \cap h$, respectively.

$$\Gamma(P) = \frac{1}{4\pi} \sum_{p \in P} w_p p \qquad (17)$$

$$= \frac{1}{4\pi} \left[\sum_{p \in P \cap h^+} w_p p + \sum_{p \in P \cap h^-} w_p p + \sum_{p \in P \cap h} w_p p \right] (18)$$

$$= \frac{1}{4\pi} \left[\sum_{p \in P \cap h^+} w_p^+ p + \sum_{p \in P \cap h^-} w_p^- p + \sum_{p \in P \cap h^+} (w_p^+ + w_p^- + w_p^h) p \right] \qquad (19)$$

$$= \frac{1}{4\pi} \left[\sum_{p \in P \cap h^+} w_p^+ p + \sum_{p \in P \cap h^-} w_p^- p - \sum_{p \in P \cap h} w_p^h p \right] (20)$$

$$= \Gamma(\overline{P \cap h^+}) + \Gamma(\overline{P \cap h^-}) - \Gamma(P \cap h) . \qquad (21)$$

Note that w_p^A is defined respectively in terms of the faces adjacent to p in polyhedron A.

Corollary 4 Let $P \subseteq \mathbb{R}^3$ be a convex polyhedral region such that $P = P_1 \cup \ldots \cup P_k$ where P_1, \ldots, P_k forms a partition of P such that each P_i is also a convex polyhedral region. Let f_1, \ldots, f_n be the faces that define the decomposition of P. The Gaussian centres of the components of the decomposition of P are related by

$$\Gamma(P) = \sum_{i=1}^{k} \Gamma(P_i) - \sum_{j=1}^{n} \Gamma(f_j) .$$
(22)

Proof sketch. Let f_1, \ldots, f_n be the faces that define the decomposition of P. Let h_1, \ldots, h_n be the planes such that face f_i lies in plane h_i . We further decompose P by the planes h_1, \ldots, h_n . See Figure 3. The result follows by recursive applications of Lemmas 1 through 3 and Theorem 7 to decompose P and subsequently reconstruct each P_1, \ldots, P_k . \Box

Lemma 5 Let $P \subseteq \mathbb{R}^3$ be a convex polyhedral region. Let h be a plane that intersects P. Let h^+ and h^- be the half-spaces induced by h. Let $\Lambda(Q)$ be the projection centre of

Figure 4: illustrations supporting Lemma 5

Q. The projection centres of the components of the decomposition of *P* induced by *h* are related by

$$\Lambda(P) = \Lambda(\overline{P \cap h^+}) + \Lambda(\overline{P \cap h^-}) - \Lambda(P \cap h) .$$
 (23)

Proof sketch. Let $l_{\theta,\phi}$ be the line through the origin parallel to $u_{\theta,\phi} = (\cos\theta\sin\phi, \sin\theta\sin\phi, \cos\phi)$. Let $Q = \overline{P \cap h^+}$, $R = \overline{P \cap h^-}$, and $L = h \cap P$. Let $A_{\theta,\phi}$ be the projection of set A onto line $l_{\theta,\phi}$. Let $m(A_{\theta,\phi})$ be the midpoint of $A_{\theta,\phi}$. By examination of the two possible cases (Figure 4),

$$m(P_{\theta,\phi}) = m(Q_{\theta,\phi}) + m(R_{\theta,\phi}) - m(L_{\theta,\phi}) . \qquad (24)$$

The relationship follows:

$$\Lambda(P) = \frac{3}{2\pi} \int_0^{\pi} \int_0^{\pi} \sin \phi \cdot m(P_{\phi,\theta}) \, d\phi \, d\theta \quad (25)$$
$$= \frac{3}{2\pi} \int_0^{\pi} \int_0^{\pi} \sin \phi [m(Q_{\theta,\phi}) + m(R_{\theta,\phi}) - m(L_{\theta,\phi})] \, d\phi \, d\theta \quad (26)$$

$$= \frac{3}{2\pi} \int_0^{\pi} \int_0^{\pi} \sin \phi \cdot m(Q_{\theta,\phi}) \, d\phi \, d\theta$$
$$+ \frac{3}{2\pi} \int_0^{\pi} \int_0^{\pi} \sin \phi \cdot m(R_{\theta,\phi}) \, d\phi \, d\theta$$
$$- \frac{3}{2\pi} \int_0^{\pi} \int_0^{\pi} \sin \phi \cdot m(L_{\theta,\phi}) \, d\phi \, d\theta \quad (27)$$
$$= \Lambda(Q) + \Lambda(R) - \Lambda(L) . \Box \qquad (28)$$

Corollary 6 Let $P \subseteq \mathbb{R}^3$ be a convex polyhedral region such that $P = P_1 \cup \ldots \cup P_k$ where P_1, \ldots, P_k forms a partition of P such that each P_i is also a convex polyhedral region. Let f_1, \ldots, f_n be the faces that define the decomposition of P. The projection centres of the components of the decomposition of P are related by

$$\Lambda(P) = \sum_{i=1}^{k} \Lambda(P_i) - \sum_{j=1}^{n} \Lambda(f_j) .$$
⁽²⁹⁾

Proof sketch. The proof is analogous to the proof of Corollary 4.

5 Equivalence of Γ and Λ in \mathbb{R}^3

Theorem 7 ([DK04]) Given any non-empty finite set of points $P \subseteq \mathbb{R}^2$, the location of its Gaussian centre, $\Gamma_2(P)$, and its projection centre, $\Lambda_2(P)$, are equal. That is,

$$\forall P \subseteq \mathbb{R}^2, \ \Gamma_2(P) = \Lambda_2(P) \ . \tag{30}$$

Figure 5: illustrations supporting Lemma 9

In this section we show Theorem 7 extends to any nonempty finite set $P \subseteq \mathbb{R}^3$.

Definition 6 A set of points $P \subseteq \mathbb{R}^3$ is xyz-symmetric if there exists some $q \in \mathbb{R}^3$ such that for all $p, p \in P \Leftrightarrow (q-p) \in P$.

Lemma 8 For any xyz-symmetric non-empty finite set of points $P \subseteq \mathbb{R}^3$, $\Gamma(P) = \Lambda(P)$.

Proof sketch. Let $P \subseteq \mathbb{R}^3$ be any *xyz*-symmetric non-empty finite set of points. Since Γ and Λ are invariant under translation, assume q = (0, 0, 0).

Given θ and ϕ , let p_1 be an extreme point of $P_{\theta,\phi}$. By symmetry, $p_2 = -p_1$ is also an extreme point of $P_{\theta,\phi}$. Therefore $m(P_{\theta,\phi}) = \frac{1}{2}(p_1 + p_2) = (0,0,0)$ and $\Lambda(P) = \frac{3}{2\pi} \int_0^{\pi} \int_0^{\pi} \sin \phi \cdot m(P_{\theta,\phi}) \, d\phi \, d\theta = (0,0,0).$

Furthermore, for any extreme point p_1 of P, $p_2 = -p_1$ is also an extreme point of P. If q_1, \ldots, q_k are the neighbours of p_1 on the convex hull of P, then r_1, \ldots, r_k are the neighbours of p_2 on the convex hull where $r_i = -q_i$. Therefore, the Gaussian weights of p_1 and p_2 are equal and $w_{p_1}p_1 + w_{p_2}p_2 = (0, 0, 0)$. Therefore, $\Gamma(P) = \frac{1}{2\pi} \sum_{p \in P} w_p p = (0, 0, 0)$. \Box

Definition 7 If $P = \{o, a, b, c\}$ is a tetrahedron such that $\angle aoc = \angle boc = \angle cab = \angle cab = \frac{\pi}{2}$ then P is a right-angle tetrahedron.

Lemma 9 If P is a right-angle tetrahedron then $\Gamma(P) = \Lambda(P)$.

Proof sketch. Assume $P = \{o, a, b, c\}$ is a right-angle tetrahedron. By the invariance of Γ and Λ under translation and rotation, assume o = (0, 0, 0), a lies on the positive xy-plane, b lies on the positive y-axis, and c lies on the positive z-axis. See Figure 5A. Let m_1, \ldots, m_6 be the midpoints of the edges of P. Let e_1, \ldots, e_{12} be the twelve edges induced by m_1, \ldots, m_6 that lie parallel to some edge of P. These new edges define a decomposition of P into four tetrahedra, A_o , A_a , A_b , and A_c , each isomorphic to P, plus one xyz-symmetric octahedron B. See Figures 5B and 5C. Let f_i be the face of intersection between tetrahedron A_i and octahedron B. Let $v_i \in \mathbb{R}^3$ be the translation vector such that for all $p, p \in A_o \Leftrightarrow (p+v_i) \in A_i$. Note that $p \in A_o \Leftrightarrow 2p \in P$. The following equation follows from Lemmas 1 through 9,

Figure 6: decomposition of a tetrahedron into right-angle tetrahedra

Corollaries 4 and 6, and Theorem 7.

$$\Gamma(P) = \Gamma(A_o \cup A_a \cup A_b \cup A_c \cup B)$$
(31)
$$= \Gamma(A_o) + \Gamma(A_a) + \Gamma(A_b) + \Gamma(A_c) + \Gamma(B) -\Gamma(f_o) - \Gamma(f_a) - \Gamma(f_b) - \Gamma(f_c)$$
(32)
$$= 4\Gamma(A_b) + y_b + y_b + y_c + \Gamma(B)$$

$$= 4\Gamma(A_{o}) + v_{a} + v_{b} + v_{c} + \Gamma(B) -\Gamma(f_{o}) - \Gamma(f_{a}) - \Gamma(f_{b}) - \Gamma(f_{c})$$
(33)

$$= 4 \left[\frac{1}{2} \Gamma(P) \right] + v_a + v_b + v_c + \Gamma(B) -\Gamma(f_o) - \Gamma(f_a) - \Gamma(f_b) - \Gamma(f_c)$$
(34)

$$= -v_a - v_b - v_c - \Gamma(B) + \Gamma(f_a) + \Gamma(f_a) + \Gamma(f_b) + \Gamma(f_c)$$
(35)

$$= -v_{a} - v_{b} - v_{c} - \Lambda(B) + \Lambda(f_{a}) + \Lambda(f_{b}) + \Lambda(f_{c})$$
(36)

$$= 4\left[\frac{1}{2}\Lambda(P)\right] + v_a + v_b + v_c + \Lambda(B)$$

$$-\Lambda(f_o) - \Lambda(f_a) - \Lambda(f_b) - \Lambda(f_c)$$
(37)
= $4\Lambda(A_o) + v_a + v_b + v_c + \Lambda(B)$
 $-\Lambda(f_o) - \Lambda(f_a) - \Lambda(f_b) - \Lambda(f_c)$ (38)
= $\Lambda(A_o) + \Lambda(A_a) + \Lambda(A_b) + \Lambda(A_c) + \Lambda(B)$

$$-\Lambda(f_o) - \Lambda(f_a) - \Lambda(f_b) - \Lambda(f_c)$$
(39)

$$= \Lambda(A_o \cup A_a \cup A_b \cup A_c \cup B) \tag{40}$$

$$= \Lambda(P) \square \tag{41}$$

Theorem 10 Given any non-empty finite set of points $P \subseteq \mathbb{R}^3$, the location of its Gaussian centre, $\Gamma(P)$, and its projection centre, $\Lambda(P)$, are equal. That is,

$$\forall P \subseteq \mathbb{R}^3, \ \Gamma(P) = \Lambda(P) \ .$$
 (42)

Proof sketch. By induction on $|V_P|$. Let V_P be the set of extreme points of P. In the base case, $|V_P| \leq 3$. When $|V_P| \leq 3$, the points of P must be coplanar and $\Gamma(P) = \Lambda(P)$ by Lemmas 1 and 2 and Theorem 7. If $|V_P| \geq 4$, tetrahedralize P (may require the addition of new vertices). If a tetrahedron T does not have any vertex that lies on a line perpendicular to the opposite face, then add a point p at the centre of the insphere of T and decompose T further into the four tetrahedra induced by p. Each of these can be decomposed into right-angle tetrahedra. See Figure 6. By Lemma 9, the Gaussian centre and projection centre of

any right-angle tetrahedron match. *P* can be reconstituted from these right-angle tetrahedra and by Corollaries 4 and 6, $\Gamma(P) = \Lambda(P)$. \Box

References

- [AGG02] Pankaj K. Agarwal, Jie Gao, and Leonidas J. Guibas. Kinetic medians and kd-trees. In 10th Annual European Symposium on Algorithms, 2002.
- [AH01] Pankaj K. Agarwal and Sariel Har-Peled. Maintaining approximate extent of moving points. In Symposium on Discrete Algorithms, pages 148–157. ACM Press, 2001.
- [BBKS00] Sergei Bespamyatnikh, Binay Bhattacharya, David Kirkpatrick, and Michael Segal. Mobile facility location. In Fourth International ACM Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, pages 46–53, 2000.
- [DK04] Stephane Durocher and David Kirkpatrick. The Gaussian centre of a set of points with applications to mobile facility location. *Discrete and Computational Geometry*, 2004. submitted for publication.
- [Her03] John Hershberger. Smooth kinetic maintenance of clusters. In ACM Symposium on Computational Geometry, pages 48–57. ACM Press, 2003.