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Abstract

Pointlocationin dynamic Delaunaytriangulationsis a prob-
lem thatasyet hasno elegant solution. Currer appioaches
either only give guaanteesagainsta wealered adwersary
or requre superlirearspace.In this pape we proposethat
we shouldseekintuition from balarcedbinary searchrees,
whererotatiors are usedto maintaina shallov worst-case
depth We descrite a (well-known) datastructue andanovel
and simple algoithm basedon bistellarflips to implemert
rotationin the structure Therotationtakestime linearin the
chang in the datastructure. The hopeis to provide a tool
thatwould leadto the designof anefficientdynamic Delau-
nay poirt locationdatastructure.

1 Introduction

A major cost in Delaunay mesh refinemen algorithns,

where a Delaunaytriangulation is refined by adding new

pointsto achieve somequality objectie (large minimum an-

gle,for instance)is thesubrotineto discover whichtriande

contairs agivencandidatepoirt. We aretherefae interested
in finding fast,simplealgoritrmsto perfam this pointloca-

tion opeation. In addition,we needto be ableto maintain
the point locatorthrough insertions(aswe refinethe mesh)
anddeletiors (aswe coasenit). While the problemgener

alizestrivially to any dimension we are for the time being

mainly interestedn handlirg poirt setsin theplane.

In the staticcase Kirkpatrick [6] hasa deterministicdata
structurewith O(n) size that answersqueries in O(logn)
time. ConstructiortakesO(n log n) time.

However, in the dynamic case,no suchbouwnd is known.
Under the so-calledcommurst mocel [8], Mulmuley has
datastructureghatoffer expectedO(n) sizedatastructues
and expected O(log n) time updatesand O(log” n) time
queries (the update time bourd assumesve have a pointer
into the structure,pertapsby having donea query befae-
hand. Also, Devillers etal. [2] have adatastructurethatof-
fersexpededO(n) sizeexpectedO(logn) time updatesind
queries; Clarksonet al. [1] have equvalentbounds. How-
ever, theadwersaryis greatlywealenedin this modd: when
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it wantsto insertorremove avettex, it mustchosearandon
vertex! Against the usualadversary all thesedatastructue
degenerateto worstcase)(n) depthandQ(n?) size.

One difficulty in designig dynamic data structuresfor
Delauray poirt locationis that any datastructurethat ex-
plicitly representghe trianguation has a lower bound of
Q(n) perupdategvenin anamortizedsetting:theadwersary
canchamgeall thetriangleswith every insertionif it inserts
points on a parabda from right to left. Assumingwe limit
ourselesto datastructurs that representthe triangulation
explicitly, this indicatesthat we want a datastructurewith
output-sensitve updatetimes.

In thatvein, we canusethe deterninistic datastructue of
Goodich andTamassid4] to obtainO(k log n) updatetime,
with O(nlogn) spaceand O(log® n) quey time, wherek
triandeshave beenmodified.

The openproldem this work attemptgo attackis: canwe
designa datastructurethatachiezesthe optimalO(n) space
and O(logn) quey time, and fast outputsensitve upcate
time —ideally O(k + logn)? We do not solve the prablem,
but we presenhtoolsthat may prove to be usefulto analyze
it. Ourtoolsareonly provento work for Delaunaytriangua-
tionsin theplane,but mostof thetechnquesusedeasilyex-
tendto higher dimensiois, sowe expect the entireappioach
canbegenealized.

2 Approach

The mainintuition in this paperis thatto solve the prodem
in two dimersions,it may be usefulto drav on our expeii-
encewith the analogusprodem in onedimension In one
dimersion,theDelaunaytriangulationis a setof 1-simplices
(segments)definedby two poirnts atits extrenities, andcon-
taining no point within its circumcirde (the samesegment)
In otherwords,a quey is: givenapointontheline, tell me
whatintend it liesin. Theusualappioachfor thisis to use
abalancd binary searchtree: AVL, red-back, splay treap,
andlikely othes. All theseappoachessharetwo essential
featues: a binaly searchtree asthe underlying datastruc-
ture, and a methodof rebalaring that transfams the tree
usingonly the rotation operatim. A treeinducesa partial
orderontheinsertiontimesof the point it contains.Rotation
correspond to inverting the insertionorder of two pointsa
andb: beforerotation a is insertecbefore b; afterrotation b
precalesa in the new inducel partialorder Thetwo points
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mustbeadjacett therecanrot beanothe pointc with inser
tion time betweern andb.

Sleatoret al [9] prove thatdoing rotatiors on treesof n
nodes is isomophic to doingbistellarflips on triangulations
of corvex (n + 2)-gors. Our conjectue is thatthis general-
izes: doing rotatilnsin a searchdatastructue for Delaunay
trianguationsis isomorghic to doing seriesof bistellarflips
on a classof triangulatios in onehigherdimersion. This
paperdemorstrategheisomorismfor planarDelaung tri-
anguations.

Ourflip-basedotationoperatia runsin time linearin the
size of the chang of the datastructue (seeCorollary 3),
which in geneal is fasterthansimply tearingout the parts
of the datastructurerelatedto a andb andretriargulating.
This is critical in Delaunaytrianguation in the planeandin
highe dimersions,becausdhe size of the part of the data
structurerelatedto arny onevertex canbelinearin the num-
ber of vertices.Usingbistellarflips malkesthe code simple,
because¢he usualapprachto building a Delauray triangu-
lation alreadyrequiles implementing them; the rotation al-
gorithm itself is alsosimple. Finally, by basingthe rotation
operdion on smallatomicflips, the datastructureis always
valid, which allows for parallelaccesgo it.

3 Tools

We usethreemaintoolsin our algoithms andanalysis.On
a first readirg of the paper it may be worthwhile to skim
throughthefollowing sectionsandreturnto themwhentheir
usefulresshasbeenfully motivated

3.1 Bistellar Flips

Bistellarflips areatopdogical transfamationdefinedon tri-
anguationsin ary dimersiond. There are essentiallytwo
types:onesthatintroduceor remove a vertex from the trian-
gulation andonesthatflip facesof thetriangulation.

A OrderOflips

B Orderl flips

Figurel: Thebistellarflips in dimersionsl, 2, and3.

A nondegenerategeanetric bistellar flip — hen@forth,
“bistellar flip” — of orders takesasinputa (d — 7)-simplex
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e (an edge,for instance). Let C be the setof d-simplices
thatincludee. If C forms a corvex spaceandhasd + 2
vettices,thenatheorenof Lawson[7] impliesthatthereare
exadly two triangdationsof the vertices:onethatincludes
e andonethatinsteadincludesthei-simplex madeup from
theothervertices.A bistellarflip movesbetweerthetwo tri-
angudations.A flip of order: reversesaflip of order(d — 1),
sowe only discusgheflips of order lessthand/2.

Not evely simplex canbe eliminatedby a singlebistellar
flip: if C is notcorvex, Lawsoris theoren doesnotapply;if
C'istoosmall(for instancein two dimensios, onetriangle)
thereis nothirg to flip; if C is too large (only possiblein
d > 3) thenthe bistellarflip is not defined althoudn there
mayexist a seriesof flips thatwill evertually eliminatee.

Figurel shavsthebistellarflipsin 1, 2, and3 dimensims.
Ind =1, ad-simplexis asegment.TheorderOflip brealsa
segmert in two by introdicing a new vertex.

Ind = 2, ad-simplexis atriande. Theordea-0 flip agan
introducesa verte, splitting a triande into three. Thereis
alsoa orderl flip, which flips an edgesharedoy two trian-
gles,creatingtwo new triangdes.

Ind = 3, ad-simple is a tetrahedon. The orderO flip
now splitsatetrahedon into four. Theorder-1 flip takestwo
tetrahedathatshareatriangularfacet, andpierceg with the
segmert betweerthe apees of eachtetrahedon, prodicing
threetetrahedaalongthatedge (thefaceandedgeareshovn
in boldin thefigure)

Becauseheorderl flip in two dimersionstakestwo trian-
glesto two triangles,it is oftencalleda 2—-2flip. Similarly,
the orderl flip in threedimersionsis a 2—-3flip, while the
order-2 flip is a 3—2flip.

3.2 Parabolic lifting map

The parallic lifting map takes points in R? to the
paratloid in R¥*!. Thatis, a point p = (pi,...,pq) is
mapedto p* = (p1,...,p4,2 = Zlepz?). The z axis
gives us a well-definel notion of up anddown in arbitray
dimersions.

We study the parallic lifting map becauséat exposes
a connetion betweenthe Delaunaytrianguation and the
lower corvex hull on the paralmloid. GivenasetS C R¢,
the (d + 1)-dimensionalower corvex hull of S* projectel
backdown to R? is the Delauray trianguation of S. Fig-
ure2 shawsthis processfor d = 1.

3.3 The history DAG

Insertion of a new vertex v into an existing Delaunaytrian-
gulatin in d dimensims canbedoneby thefollowing algo-
rithm, parawrasedrom EdelsbrmnerandShah3]. Consult
their paperfor a prod of its correctnesg(andof its rurning
time).
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Figure2: Theparabtic lifting mapin onedimension First,
we lift the points ontheline to the pardola. Thenwe take
thecorvex hull, andprojectthefacetysegments)of thecon-
vex hull backdown to the line. The history DAG is also
displayedor oneinsertionorder.

INSERT-VERTEX (v)

1. findthed-simplex s thatcontainsy

2. splitsintod + 1 simplicesusinga O-order
bistellarflip

3. while aneighbouiing d-simplex s’ containsv
in its circuncircle,

3.1 find aconvex setof d-simpliciesincluding s’

3.2 destry s’ by performingtheflip

Seedhealgoiithm by creatingalarged-simplex in which
all thepointswill fit. Thisis for simplicity of exposition,and
is notfundamental.

We canmaintaina datastructurethatdescribeshe history
of the run of the algaithm: uponsplitting a simplex s, set
a pointer from ¢ to thed + 1 new simplicesthatreplaceit.
Similarly, uponflipping asimplex s’ in step3.2,setapointer
fromthesimpliciesthatweredestryedto thesimpliciesthat
werecreatedoy theflip.

Sincethis datastructue is agyclic andreptesentghe his-
tory of the algorithm, it is termedthe history DAG [5]. We
saya simplex is buried by the simplex thatreplacedt. We
sayasimplex is aleaf if no simplex buriesit — noticethata
leafis a Delaung facet.Finally, thebourding simplex is the
root

ThehistoryDAG canbeusedto implemen the searctfor
thesimplex thatcontairsv. Startingwith s beingtheroot,we
look at the simplicesthat buried s andrecurinto the single
simplex thatcontairs v, returring theleafwe cometo.
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In dimersiond = 1, ad-simplex is asggmert. A sggmeri
ontheline canonly have apoirt insideits circumdrcle if the
pointis insidethe segmen, therebre wheninsertingpoints
into the 1-d Delaunaytrianguation, the algotithm will only
perfam an order-0 flip, andline 3.2will never beinvoked.
The history DAG will thusonly have pointersfrom buried
segmert to their two subsgmernts. In otherwords,the his-
tory DAG in this cases anormal binaly searchree.

In dimersiond = 2, ad-simplex is a triangle. Splitting
atrianglecreateghreenew trianglesthatpartitionthe space
of s. Flips areimportantnow; they take 2 trianglesandflip
the edgebetweenthemto createtwo new triandes. This

Ind=1and d=2

mears thatthe structue is no longer a tree, althoud it re-
mainsacyclic.

3.3.2 Lifting the history DAG

The history DAG hasan eleggart interpietationin the lifting
map. Splitting aface(ad-simplex) correspadsto creatinga
(d + 1)-simpex with oneface(thefacethatwassplit) onthe
top,andtheotherfacegthed + 1 new faces)onthebottom
Similarly, flipping anon-Delaung d-simplex corresponds$o
takingavalley whosewalls areformedby theold simplicies
andcoveling it with the new simplicies,forming a (d + 1)-
simplex from thefilled-in valley. Thusthe nodesof thehis-
tory DAG correspondto simplicesin a simplicial complex
thatfills the corvex closureof the setof poirts lifted to the
paralmloid.

Ind = 2, thesetof tetraheda createdy insertingavertex
v defines ashapenotunlike acircuspavillion: somenumber
of polesholding up carvas, meetingin a point. Becauseof
this, we call this setthetent (v). Usingthesameanalog, the
triandesthatwereon the suriacebeforev but areburied by
thetent(v) arecalledthebase(v). Thesedefinitiorstrivially
genealizeto arbitray dimension

4 Rotations in 2-d

It'salreadybeenknown for almost20 yearsthatrotationin a
tree(the 1-d Delaunaypoint locationstructue) is a bistellar
flip in onehighe dimersion. Herewe shaw thatrotationin
the 2-d Delaunaypoirt locationstructure- the history DAG
—is a seriesof bistellarflips in threedimensios. Thereare
two maindifferencesbetweerthe 1-d andthe 2-d casesone
point now correspondsto a setof simplices(a tenf) in our
DAG; andour DAG is notatree.In onedimersion,vertices
a andb canbe rotatedif they are parent andchild. In two
dimersions,we canrotatetent(a) andtent(b) if sometetra-
hedaof tent(b) lie overfacesf tent(a), butonly if noother
tent(c) is overain by tent(b) while overlying tent(a).

A key obsendtion is that during the rotation opeation,
nothing hapgensto simplicesoutsideof tent(a) U tent(b).
Thetefore, the surfaceof the rotation region (the exposed
lower faces— initially, the lower facesof tent(b), plus the
lower facesof tent(a) thattent(b) doesnot bury) doesnot
charge; andsimilarly with the baseof therotationregion.

In thealgorithm, @) is a structue thatallows the constat
time operatimspush to addanelementpop to remove an
arbitrary elementandr enove to remove a givenelement.
Despitethenaming () neednotbeaqueaueor astack:orde-
ing is notimportan.
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ROTATE(a, b)
1. @ <« alltetrahedain tent(b) thathave
botha andb asvertices
2. while @ notempty
2.1 popT from@
2.2 if T hasalegalbistellarflip (seebelow)
2.2.1 letC bethetetrahedran theflip
2.2.2 removeall tetraheda C from Q if present
2.2.3 perfamthebistellarflip C — C'
2.2.4 pushonto@ thetetraheda of C' that
have botha andb

In step2.2, to find a legd flip for a tetrahedon T', we
form all combinationsof T andits neighbouss. In alegd
flip C, all tetraheda have a, at leastone (namely T') has
b, thetetrahdrafill their corvex hull, andall tetraheda are
within therotationregion. We cancheckthe lastrestriction
by nunberingverticesby an insertionorder that yields the
DAG. A tetrahedonthathasavertex numbkeredhigherthana
or b is below therotationregion andthuscanna beinvolved
in avalidflip. A tetrahedra aboretherotationregioncanna
havea.

For lack of space we preset hereonly a sketch of the
corretnessof the apprach; the detailedproofs arein the
full paperatwwww. cccg. ca.

e Proposition 1 Progress: Every flip we perform pro-
ducesat leastonetetrahedon of thefind result.

e Proposition 2 Non-stik: Unlesswe havereadedthe
endof the algorithm, every flip brings usto a statein
which anaher flip canbedore.

Togethe, thesetwo propositionsmeanthatthe algaithm
terminategsincethereis afinite amoun of work to bedone)
with the correct answer(sinceit doesnot stopunlessall of
thework hasbeendong. As acorollaryto Propaition 1, we
cancomputetherunning time:

Cordlary 3 Thealgarithm terminatesafter doinga numter
of flips equal to the numter of trianglesin base(a) onwhich
b encoades.

Theonly stepthattakesmore thanconstantwork perflip
is thefirst, intializing Q: it maytake time O(|tent(b)|) even
if therearefew flips to be dore. However, if we give the
algorithm onetetrahedon thathasbotha andb onit, theal-
gorithm cansearchthe DAG from therein timelinearin the
numter of tetrah@rathathave a andb. All of thesetetra-
hedrawill have to beflipped exceptpertapsfor one,sothe
total time is linearin the numker of flips, whichis linearin
thechang in thedatastructue.

5 Designing rotation logic

With the machiney we have braughtto bearon this prab-
lem, we arenow in agoad positionto begin consideing not
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only how, but whenandwhele to perfam rotations. Unfor-
tunately a completelystraightfaward application of binary
treetechniqesmaynotdirectlywork. In particdar, we have
investigatedmplementingatreapanalogie.

A treapis abinaly searchreewith theaddedproperty that
evely pointinsertednto thetreegetsarandan priority. The
priorities arekeptin heaporder via rotatiors. Equivalently,
the priority is a virtual insertiontime, andthe treeis made
to beindistinguishablefrom having insertedhepointsin the
rancbm order Becausea searchtree built in randan order
hasO(lgn) depth,sodoesthetreap.

We caneasilygeneralizéhisto theDelauray historyDAG
andour rotationoperdion — indeed,we have implemente
this. However, it is nottruethata DelaunayDAG built in ran-
domorderis shallav: in fact, therearepoint setson which
theexpecteddepthis linear.

Despitethis negaive result,we know thatthereis anin-
sertionorderthatinducesa shallov DAG: Kirkpatrick’s al-
gorithm producesone. Therdore, we expectthatthereis a
rotatin-basedalgorithm for maintainirg ashallav Delaung
poirt locationdatastructure.
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