
CCCG 2004, Montreal, Quebec, August 9–11, 2004

Using Bistellar Flips for Rotations in Point Location Structures
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Pointlocationin dynamicDelaunaytriangulationsis aprob-
lem thatasyet hasno elegant solution. Current approaches
either only give guaranteesagainsta weakened adversary,
or require superlinearspace.In this paper we proposethat
we shouldseekintuition from balancedbinarysearchtrees,
whererotations are usedto maintaina shallow worst-case
depth. Wedescribea(well-known)datastructureandanovel
andsimplealgorithm basedon bistellarflips to implement
rotationin thestructure.Therotationtakestimelinearin the
change in the datastructure.The hopeis to provide a tool
thatwould leadto thedesignof anefficient dynamicDelau-
naypoint locationdatastructure.
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A major cost in Delaunay mesh refinement algorithms,
where a Delaunaytriangulation is refinedby addingnew
pointsto achievesomequalityobjective(largeminimum an-
gle,for instance), is thesubroutinetodiscover whichtriangle
containsagivencandidatepoint. Wearetherefore interested
in finding fast,simplealgorithmsto perform this point loca-
tion operation. In addition,we needto be ableto maintain
thepoint locatorthrough insertions(aswe refinethemesh)
anddeletions (aswe coarsenit). While theproblemgener-
alizestrivially to any dimension, we arefor the time being
mainly interestedin handling point setsin theplane.

In thestaticcase,Kirkpatrick [6] hasa deterministicdata
structurewith �! #"%$ size that answersqueries in �! #&('*)+"%$
time. Constructiontakes �! #",&-'.)/"%$ time.

However, in the dynamic case,no suchbound is known.
Under the so-calledcommunist model [8], Mulmuley has
datastructuresthatoffer expected�! #"%$ sizedatastructures
and expected �! 0&-'.)/"%$ time updates and �! 0&-'.)212"%$ time
queries (the updatetime bound assumeswe have a pointer
into the structure,perhapsby having donea querybefore-
hand). Also, Devillers etal. [2] haveadatastructurethatof-
fersexpected �! #"%$ sizeexpected�! 0&-'.)+"%$ timeupdatesand
queries; Clarksonet al. [1] have equivalentbounds. How-
ever, theadversaryis greatlyweakenedin this model: when3
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it wantsto insertor removeavertex, it mustchoosearandom
vertex! Against theusualadversary, all thesedatastructure
degenerateto worstcase45 #"%$ depthand 45 #" 1 $ size.

One difficulty in designing dynamic datastructuresfor
Delaunay point location is that any datastructurethat ex-
plicitly representsthe triangulation has a lower bound of45 0"%$ perupdate,evenin anamortizedsetting:theadversary
canchangeall the triangleswith every insertionif it inserts
points on a parabola from right to left. Assumingwe limit
ourselves to datastructures that representthe triangulation
explicitly , this indicatesthat we want a datastructurewith
output-sensitiveupdatetimes.

In thatvein,wecanusethedeterministic datastructure of
Goodrich andTamassia[4] to obtain �! 768&-'.)9"%$ updatetime,
with �! 0"5&-'.)/"%$ spaceand �! #&('*) 1 "%$ query time, where 6
triangleshavebeenmodified.

Theopenproblem this work attemptsto attackis: canwe
designa datastructurethatachievestheoptimal �! #"%$ space
and �! #&('*)+"%$ query time, and fast output-sensitive update
time – ideally �! :6<;=&-'.)9"%$ ? We do not solve theproblem,
but we present tools thatmayprove to beusefulto analyze
it. Ourtoolsareonly provento work for Delaunaytriangula-
tionsin theplane,but mostof thetechniquesusedeasilyex-
tendto higher dimensions, sowe expect theentireapproach
canbegeneralized.
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Themain intuition in this paperis that to solve theproblem
in two dimensions,it maybeusefulto draw on our experi-
encewith theanalogousproblem in onedimension. In one
dimension,theDelaunaytriangulationis asetof 1-simplices
(segments)definedby two points at its extremities,andcon-
tainingno point within its circumcircle (thesamesegment).
In otherwords,a query is: givena point on theline, tell me
whatinterval it lies in. Theusualapproachfor this is to use
a balanced binarysearchtree: AVL, red-black, splay, treap,
andlikely others. All theseapproachessharetwo essential
features: a binary searchtreeas the underlying datastruc-
ture, anda methodof rebalancing that transforms the tree
usingonly the rotationoperation. A tree inducesa partial
orderontheinsertiontimesof thepoint it contains.Rotation
corresponds to inverting the insertionorder of two points C
and D : beforerotation, C is insertedbefore D ; afterrotation, D
precedes C in thenew induced partialorder. Thetwo points
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mustbeE adjacent: therecannot beanother point F with inser-
tion timebetweenC and D .

Sleatoret al [9] prove that doing rotations on treesof "
nodes is isomorphic to doingbistellarflips on triangulations
of convex  0"G;=H.$ -gons. Our conjecture is thatthis general-
izes:doing rotations in a searchdatastructure for Delaunay
triangulationsis isomorphic to doingseriesof bistellarflips
on a classof triangulations in onehigherdimension. This
paperdemonstratestheisomorphismfor planarDelaunay tri-
angulations.

Ourflip-basedrotationoperation runsin time linearin the
size of the change of the datastructure (seeCorollary 3),
which in general is fasterthansimply tearingout the parts
of the datastructurerelatedto C and D andretriangulating.
This is critical in Delaunaytriangulation in theplaneandin
higher dimensions,becausethe sizeof the part of the data
structurerelatedto any onevertex canbelinearin thenum-
berof vertices.Usingbistellarflips makesthecode simple,
becausetheusualapproachto building a Delaunay triangu-
lation alreadyrequires implementingthem; the rotational-
gorithm itself is alsosimple. Finally, by basingtherotation
operation on smallatomicflips, thedatastructureis always
valid, whichallows for parallelaccessto it.

I J ���@K �
We usethreemaintools in our algorithmsandanalysis.On
a first reading of the paper, it may be worthwhile to skim
throughthefollowing sectionsandreturnto themwhentheir
usefulnesshasbeenfully motivated.

I�LM� N � �	�PO�KQKQ�.
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Bistellarflips areatopological transformationdefinedontri-
angulations in any dimension V . There areessentiallytwo
types:onesthatintroduceor removea vertex from thetrian-
gulation, andonesthatflip facesof thetriangulation.

A Order0 flips B Order1 flips

Figure1: Thebistellarflips in dimensions1, 2, and3.

A non-degenerategeometric bistellar flip – henceforth,
“bistellar flip” – of order W takesasinput a X:Y[Z\W�] -simplex

^ (an edge,for instance). Let _ be the setof Y -simplices
that include ^ . If _ forms a convex spaceandhas Ya`cb
vertices,thena theoremof Lawson[7] impliesthatthereare
exactly two triangulationsof thevertices:onethat includes^ andonethat insteadincludesthe W -simplex madeup from
theothervertices.A bistellarflip movesbetweenthetwo tri-
angulations.A flip of order W reversesa flip of order X#YdZeW�] ,
sowe only discusstheflips of order lessthan Y�f�b .

Not every simplex canbeeliminatedby a singlebistellar
flip: if _ is notconvex, Lawson’s theorem doesnotapply;if_ is toosmall(for instance,in twodimensions,onetriangle),
thereis nothing to flip; if _ is too large (only possibleinYhgji ) thenthe bistellarflip is not defined, although there
mayexist aseriesof flips thatwill eventually eliminatê .

Figure1 showsthebistellarflips in 1,2,and3 dimensions.
In Y!kcl , a Y -simplex is asegment.Theorder-0 flip breaksa
segment in two by introducinga new vertex.

In YGkcb , a Y -simplex is a triangle. Theorder-0 flip again
introducesa vertex, splitting a triangle into three. Thereis
alsoa order-1 flip, which flips anedgesharedby two trian-
gles,creatingtwo new triangles.

In Ymkni , a Y -simplex is a tetrahedron. The order-0 flip
now splitsa tetrahedron into four. Theorder-1 flip takestwo
tetrahedrathatshareatriangularfaceo , andpierceso with the
segment betweentheapexes of eachtetrahedron,producing
threetetrahedraalongthatedge(thefaceandedgeareshown
in bold in thefigure).

Becausetheorder-1flip in twodimensionstakestwo trian-
glesto two triangles,it is oftencalleda 2–2flip. Similarly,
the order-1 flip in threedimensionsis a 2–3 flip, while the
order-2 flip is a3–2flip.

p�qUr sut.v�t@wTx@yQz�{|yUz }7~�z(�A���|t��
The parabolic lifting map takes points in �m� to the
paraboloid in ���P��� . That is, a point ��k��U� ����������� � ��� is
mapped to �2��k��U� ����������� � �.��� k�� ��-� � ���� � . The � axis
gives us a well-defined notion of up anddown in arbitrary
dimensions.

We study the parabolic lifting map becauseit exposes
a connection betweenthe Delaunaytriangulation and the
lower convex hull on theparaboloid. Givena set � �¡� � ,
the X:Y¢`£l�] -dimensionallower convex hull of ��� projected
backdown to ��� is the Delaunay triangulation of � . Fig-
ure2 shows this processfor Y<k¤l .
p�qUp ¥,¦�§�¦�z ¨	~	xAvª©�«8¬®
Insertion of a new vertex ¯ into anexisting Delaunaytrian-
gulation in Y dimensionscanbedoneby thefollowing algo-
rithm,paraphrasedfromEdelsbrunnerandShah[3]. Consult
their paperfor a proof of its correctness(andof its running
time).
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Figure2: Theparabolic lifting mapin onedimension. First,
we lift thepoints on the line to theparabola. Thenwe take
theconvex hull, andprojectthefacets(segments)of thecon-
vex hull back down to the line. The history DAG is also
displayedfor oneinsertionorder.

INSERT-VERTEX( ° )
1. find the V -simplex ± thatcontains°
2. split ± into V5;³² simplicesusinga 0-order

bistellarflip
3. while a neighbouring V -simplex ±�´ contains°

in its circumcircle,
3.1 find a convex setof V -simpliciesincluding ±@´
3.2 destroy ±�´ by performingtheflip

Seedthealgorithm by creatinga large V -simplex in which
all thepointswill fit. This is for simplicity of exposition,and
is not fundamental.

Wecanmaintainadatastructurethatdescribesthehistory
of the run of the algorithm: uponsplitting a simplex ± , set
a pointer from µ to the V¢;¶² new simplicesthat replaceit.
Similarly, uponflipping asimplex ±A´ in step3.2,setapointer
from thesimpliciesthatweredestroyedto thesimpliciesthat
werecreatedby theflip.

Sincethis datastructure is acyclic andrepresentsthehis-
tory of thealgorithm, it is termedthehistory DAG [5]. We
saya simplex is buried by thesimplex that replacedit. We
saya simplex is a leaf if no simplex buriesit – noticethata
leaf is aDelaunay facet.Finally, theboundingsimplex is the
root.

ThehistoryDAG canbeusedto implement thesearchfor
thesimplex thatcontains ° . Startingwith ± beingtheroot,we
look at the simplicesthatburied ± andrecurinto thesingle
simplex thatcontains ° , returning theleafwe cometo.

I�LUI�LM� �M� V¢·¤² � � � V<·¸H
In dimension V�·¹² , a V -simplex is a segment. A segment
ontheline canonly haveapoint insideits circumcircle if the
point is insidethesegment, thereforewheninsertingpoints
into the1-V Delaunaytriangulation, thealgorithm will only
perform an order-0 flip, andline 3.2 will never be invoked.
The history DAG will thusonly have pointersfrom buried
segment to their two subsegments. In otherwords,the his-
tory DAG in this caseis a normal binary searchtree.

In dimension V\·ºH , a V -simplex is a triangle. Splitting
a trianglecreatesthreenew trianglesthatpartitionthespace
of ± . Flips areimportantnow; they take 2 trianglesandflip
the edgebetweenthem to createtwo new triangles. This

means that the structure is no longer a tree,although it re-
mainsacyclic.

I�LUI�LU> » � ¼7��� ��½ ��B�O¾B@� �	�	��
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ThehistoryDAG hasanelegant interpretationin the lifting
map.Splittinga face(a V -simplex) correspondsto creatinga #VÁ;m²�$ -simplex with oneface(thefacethatwassplit) on the
top,andtheotherfaces(the VÃ;³² new faces)onthebottom.
Similarly, flipping anon-Delaunay V -simplex correspondsto
takingavalley whosewalls areformedby theold simplicies
andcovering it with thenew simplicies,forming a  #VÄ;c²�$ -
simplex from thefilled-in valley. Thusthenodesof thehis-
tory DAG correspondto simplicesin a simplicial complex
thatfills theconvex closureof thesetof points lifted to the
paraboloid.

In V¢·£H , thesetof tetrahedracreatedby insertingavertex° definesashapenotunlikeacircuspavillion: somenumber
of polesholding up canvas, meetingin a point. Becauseof
this,wecall thissetthe Å�Æ�Ç�Å  ° $ . Usingthesameanalogy, the
trianglesthatwereon thesurfacebefore° but areburiedby
the ÅÈÆ�Ç�Å  ° $ arecalledthe É@Ê.Ë�Æ  ° $ . Thesedefinitionstrivially
generalizeto arbitrary dimension.

Ì ÍÎ���	������� � �S� �Ï>�Ð �
It’salreadybeenknown for almost20yearsthatrotationin a
tree(the1-d Delaunaypoint locationstructure) is a bistellar
flip in onehigher dimension. Herewe show thatrotationin
the2-dDelaunaypoint locationstructure– thehistoryDAG
– is a seriesof bistellarflips in threedimensions. Thereare
two maindifferencesbetweenthe1-dandthe2-dcases:one
point now correspondsto a setof simplices(a tent) in our
DAG; andourDAG is not a tree.In onedimension,verticesC and D canbe rotatedif they areparent andchild. In two
dimensions,wecanrotateÅÈÆ�Ç�Å  :CA$ and Å�Æ�Ç�Å  :D�$ if sometetra-
hedraof ÅÈÆ�Ç�Å  7D�$ lie overfacesof Å�Æ�Ç�Å  #C�$ , butonly if nootherÅ�Æ�Ç�Å  #F�$ is overlain by ÅÈÆ�Ç�Å  7D�$ while overlying Å�Æ�Ç*Å  #C�$ .

A key observation is that during the rotation operation,
nothing happensto simplicesoutsideof ÅÈÆ�Ç�Å  :CA$+Ñ ÅÈÆ�Ç�Å  7D�$ .
Therefore, the surfaceof the rotation region (the exposed
lower faces– initially, the lower facesof Å�Æ�Ç�Å  :D�$ , plus the
lower facesof Å�Æ�Ç�Å  #C�$ that ÅÈÆ�Ç�Å  7D�$ doesnot bury) doesnot
change;andsimilarly with thebaseof therotationregion.

In thealgorithm, Ò is a structure thatallows theconstant-
time operationspush to addanelement,pop to remove an
arbitrary element,andremove to remove a givenelement.
Despitethenaming, Ò neednotbeaqueueor astack:order-
ing is not important.
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TE( C , D )
1. ÒcÕ all tetrahedra in ÅÈÆ�Ç�Å  7D�$ thathave

both C and D asvertices
2. while Ò notempty
2.1 pop Ö from Ò
2.2 if Ö hasa legalbistellarflip (seebelow)
2.2.1 let × bethetetrahedrain theflip
2.2.2 remove all tetrahedra × from Ò if present
2.2.3 perform thebistellarflip ×¤Ø�× ´
2.2.4 pushonto Ò thetetrahedra of × ´ that

haveboth C and D
In step2.2, to find a legal flip for a tetrahedron Ö , we

form all combinationsof Ö and its neighbours. In a legal
flip × , all tetrahedra have C , at leastone (namely, Ö ) hasD , the tetrahedrafill their convex hull, andall tetrahedra are
within therotationregion. We cancheckthe last restriction
by numberingverticesby an insertionorder that yields the
DAG.A tetrahedronthathasavertex numberedhigherthanC
or D is below therotationregionandthuscannot beinvolved
in avalidflip. A tetrahedron abovetherotationregioncannot
have C .

For lack of space,we present hereonly a sketch of the
correctnessof the approach; the detailedproofs are in the
full paperatwww.cccg.ca.

Ù Proposition 1 Progress: Every flip we perform pro-
ducesat leastonetetrahedronof thefinal result.

Ù Proposition 2 Non-stick: Unlesswe havereachedthe
endof the algorithm, every flip brings us to a statein
which another flip canbedone.

Together, thesetwo propositionsmeanthat thealgorithm
terminates(sincethereis afinite amount of work to bedone)
with thecorrect answer(sinceit doesnot stopunlessall of
thework hasbeendone). As acorollaryto Proposition1, we
cancomputetherunning time:

Corollary 3 Thealgorithm terminatesafterdoinga number
of flipsequal to thenumber of trianglesin É@Ê*ËÚÆ  :C�$ onwhichD encroaches.

Theonly stepthat takesmore thanconstantwork perflip
is thefirst, intializing Ò : it maytake time �! �Û Å�Æ�Ç*Å  :D�$�Û $ even
if thereare few flips to be done. However, if we give the
algorithm onetetrahedron thathasboth C and D on it, theal-
gorithm cansearchtheDAG from therein time linearin the
number of tetrahedra that have C and D . All of thesetetra-
hedrawill have to beflipped, exceptperhapsfor one,sothe
total time is linear in thenumber of flips, which is linear in
thechange in thedatastructure.

Ü ÀÃO.��� ½�� � �A½ 
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With the machinery we have brought to bearon this prob-
lem,we arenow in a good positionto begin considering not

only how, but whenandwhere to perform rotations.Unfor-
tunately, a completelystraightforwardapplication of binary
treetechniquesmaynotdirectlywork. In particular, wehave
investigatedimplementinga treapanalogue.

A treapis abinary searchtreewith theaddedpropertythat
every point insertedinto thetreegetsa random priority. The
priorities arekept in heaporder via rotations. Equivalently,
the priority is a virtual insertiontime, andthe treeis made
to beindistinguishablefrom having insertedthepointsin the
random order. Becausea searchtreebuilt in random order
has �! 0&-)/"%$ depth,sodoesthetreap.

Wecaneasilygeneralizethisto theDelaunayhistoryDAG
andour rotationoperation – indeed,we have implemented
this. However, it isnottruethataDelaunayDAGbuilt in ran-
domorderis shallow: in fact, therearepoint setson which
theexpecteddepthis linear.

Despitethis negative result,we know that thereis an in-
sertionorderthat inducesa shallow DAG: Kirkpatrick’s al-
gorithm producesone. Therefore, we expect that thereis a
rotation-basedalgorithm for maintainingashallow Delaunay
point locationdatastructure.
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