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Given � red and � blue points in the plane and a planar
straightline matchingbetweenthe red andthe blue points,
thematching canbeextendedinto a bipartiteplanarstraight
line spanning tree. That is, any red-blue planarmatching
canbecompletedinto acrossing-freered-bluespanning tree.
Sucha treecanbeconstructedin ��������������� time.
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Interconnectiongraphs amongdisjoint objectsin the plane
are fundamentalin computationalgeometry, the geometric
TSP being a flagship example. Since a minimum length
TSPtour of points in the planehasno self-crossing,inter-
connection graphs are often thought of as planar straight
line graphs (PSLGs). Numerous variantsof interconnec-
tion graphproblemswerestudiedin recent years,including
Hamiltoniantours, Hamiltonianpaths,and spanning trees
satisfyingvariousconstraints.

Thispaperaddressestwo problemsonconnectingdisjoint
componentsof aplanarstraightline graph. Thefirst problem
involvescolor conforming augmentationof colored graphs
into connected PSLGs.A secondproblemis concernedwith
theaugmentationof 2-edgeconnected(but monochromatic)
PSLGs. A connected graphis 2-edge connected if at least
two edgesneedto beremovedto split thegraphinto two or
moreconnectedcomponents.We havethefollowing results.. Considera PSLG / andsupposeit has 0 connectedcom-
ponents. Furthermore,theverticesof / arecoloredso that
no two adjacent have thesamecolor. SeeFig. 1. We show
that onecanadd 02143 straightline edgesto / so that we
obtaina connectedPSLGthatconformsto thecoloring.
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Figure1: Augmenting a coloreddisconnectedPSLG.

. In particular, if we aregivena setof � bi-chromaticline
segments,wecanfind asetof ��193 edgessothatweareleft
with a color conforming planarstraightline spanning tree.
SeeFig. 2.

Figure2: Augmenting disjointbi-chromaticsegments.

. Suppose/ is a PSLG consistingof 0 2-edge connected
components. We canadd :*�;0<1=3>� edgesto / so that the
resultis a 2-edgeconnectedPSLG.. In particular, we can augment a set of 0 disjoint trian-
gleswith :?�@0�193A� line segmentsleaving a2-edgeconnected
PSLGsuchthatevery boundedfaceis a triangle.SeeFig. 3.

Figure3: Augmenting a setof triangles to obtaina 2-edge
connectedPSLGsuchthatevery boundedfaceis a triangle.

We offer a constructive proof for all the above problems
basedon thefollowing theorem.
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TheorB em 1 For any two finite PSLGswhoseplanar draw-
ingsare disjoint,oneof thegraphs hasa vertex that seesan
entireedgeof theothergraph.

Notethattherolesof two PSLGs,C and D , in Theorem1
arenot symmetric: It is possiblethat C hasno vertex that
wouldseeanentireedgeof D ; in thiscaseavertex of D sees
a full edgeof C . In Section2, we show that if the convex
hull of (drawing of) D doesnotcontainC thenavertex of C
seesanentireedgeof D .

Theorem1 leadsto an ���E�GFA� time algorithm to construct
a color conforming spanning treein thefirst problemanda
2-edge connectedaugmentedgraphin the secondproblem
for an input of size � . In Section4, we provide an alter-
native proof for the first problem that canbe turnedinto a
�����������H��� timealgorithms.

Theorem 2 Everysetof bi-chromatic line segments,where
any two segments are either disjoint or share an endpoint,
canbeextendedto a color conformingandconnectedPSLG
in �������I�J�K��� time.
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Colored PSLGs. Geometricgraphs on red-bluepointshave
received increasingattentionrecently. For aset X of redand
D of bluepointsin theplane, YZ�EX\[]D^� denotes thegeomet-
ric bipartitegraph whosevertex setis X\_`D andwhoseedges
arethe red-blue line segments. A pathin Ya�EX\[bD\� is nec-
essarilyalternating betweenred andblue points. It is well
known that for � red and � blue points in the plane, there
is alwaysa crossingfreeperfect red-blue matching (e.g., by
repeatedapplication of thehamsandwich theorem[11]).

For � red and � blue points in the plane, YZ�@X^[]D^� does
not always contain a crossing-free Hamiltonian tour [1].
Kaneko, Kano, and Yoshimoto [10] proved that such a
Hamiltonian tour have �c1d3 self-crossingsin the worst
case.Kaneko andKano [9] showed that if e X�egfih\�be D2e F �
then thereis an alternating path containing all red points.
Kaneko [7] proved that for any � red and � blue points in
the plane, thereis a color conforming connected PLSGof
maximal degree three.

Theseandmany otherinterestingresultsongeometricred-
bluegraphscanbefound in a recent survey paperof Kaneko
andKano[8].

Encompassing graphs. Given a setof pairwisedisjoint
line segments in theplane, anencompassingtreeis a PSLG
whosevertex setis thesetof segment endpointsandcontains
every input segmentasanedge.

Noticethateveryencompassingpathconsistsof inputseg-
mentsandnon-input segments alternately. Not every setof
segments admitsa Hamiltonianencompassingpath. Pach
andRivera-Campo[12] showedthateverysetof � segments
have a subsetof size j�����kml]nV� for which an Hamiltonian
encompassingtreeexists. The longestalternatingpathnot
crossingany of theinitial � segmentshassize h\�������K��� in the

worst case[5]. Bose,Houle,andToussaint[3] proved that
every setof disjoint line segmentsin the planecanbeaug-
mentedto aconnectedPSLGof maximal degreethree.They
canconstructsucha treefor � segments in ���E�o�����H��� time.
Later, Hoffmann andTóth [6] proved that thereis also an
Hamiltonianencompassinggraph of maximaldegreethree.

p q �%$'$Rrs$Rrstou O $R� O�vw�

In orderto prove Theorem1 we first establishthefollowing
two lemmas.

Theproof of thefirst lemmais basedon a resultby Avis
andFukuda [2]. It shows thata point external to theconvex
hull of PSLGseesevery point of (the drawing of) at least
oneedge.Theproofsof bothlemmasareavailablein thefull
versionof this paper.

Lemma 3 Let x be a point external to the convex hully�z �@D^� of (the drawing of) a PSLG D . Thenthere exists
anedge { in D such that x seesall of { .
Proof. Seethefull paper. |

Oursecondlemmausesa similarargument.

Lemma 4 Let }H[bxR~J[]x k [��V���#[]xR��[
� denote the boundary of
the relativeconvex hull of D relativeto C so that } and �
are in D and x*~�[]x k [��V����[]x�� are a reflex chain in C . Then
there is a vertex x��
[b�K�9�A�������m0'� thatseesan entiresegment
in D .

Proof. Seethefull paper. |
Thesetwo lemmasnow establishTheorem1.

Proof of Theorem 1. Considertwo PSLGs C and D
whoseplanar drawings aredisjoint. Assumethat a vertex
of theconvex hull of C�_2D is avertex of C (in otherwords,
theconvex hull of D does not containthatof C ). We show
thata vertex of C seesanentireedgeof D .

In thecasewheretheconvex hulls ���'C andthatof D are
disjoint, we find a vertex x���C for which we can apply
Lemma 3. Let

y�z �@D^� denotethe boundaryof the convex
hull of D and let x be a point on

y�z �@C�� . We say that x
bridges

y�z �@D^� , if thereare two distinct support lines ofy�z �@D^� , � k and � F passingthrough x andpoints } and � in
D suchthat the theregion boundedby � k , � F and

y�z �@D^�
contains no point of C except for x . Oneway to find this
bridgeis to ”inflate” theconvex hull of D until it hits a ver-
tex in C . By Lemma3, x seesanentireedgeof D andthe
visibility is notoccludedby edgesof C either.

In the casewherethe convex hull of D relative to C is
incident to C let }H[bx ~ [bx k [V�I���I[]x � [
� denotetheboundaryof
theconvex hull of D relative to C so that } and � arein D
and xR~�[]x k [����I��[bx�� are in C . It follows from Lemma4 that
thereis an x��m[m�K���A�?�I���-0)� thatseesandentireedgein D .
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For our first application we consider a planedrawing of a
graphwith 0 connected componentsandwith verticescol-
ored so that no edgeof the graphis monochromatic. We
want to add 0�1�3 edgesso thatwe areleft with onesingle
connectedcomponentwith nomonochromatic edges.

We proceed by induction on the number of components.
If thereis only onecomponent,thentheinput graphis con-
nected.Otherwisewepartitiontheinputin two disjointparts
which we call C and D . It follows from Theorem 1 that a
vertex � of C or D seesat leastoneentireedgeof D or C ,
respectively. Sincenoedgeis monochromatic,either �>x)[m��� ,
or �>x)[m�P� is a color conforming connectionbetweenC and
D . Augment the input graphby this edge: the number of
connectedcomponentsdrops by one—inductioncompletes
theproof.

For oursecondresult,assumethatwehaveaplanardraw-
ing of a graphsuchthat eachcomponentof the graph is 2-
edgeconnected. Oneexample of suchan input is a setof
disjoint triangles. Supposethat thereare 0 connectedcom-
ponentsin theinput. We wantto augment this drawing with
:*�;021�3>� edgesso that we have a singlecomponentthat is
2-edgeconnected.Thisproblemcloselyresemblestheprob-
lemabovewhereweaugmentacoloredstraightline drawing
of a planargraph. Theonly differenceis thatwe connect a
vertex to bothendpoints of thevisible line segment.

� q �%$'$Rrs$Rrstou O $R� O�v�p

Our secondproof for the first problemis similar in some
senseto thatof Boseet al. [3]: We construct a convex par-
tition of the free spacearound the line segments, andthen
addnon-crossingedgesin eachof the convex faces.Since
thenumber of verticeslying alonga singlefacecanbearbi-
traryandwe havenocontrol over thedistributionof redand
bluesegment endpoints incident to a singlecell, we cannot
give a bound on the maximal degree of the resultingspan-
ninggraph.
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Assumethat we aregiven � pairwisedisjoint segmentsin
the plane. We assume,for simplicity, that no segment is
vertical andthereareno two collinearsegments. The free
spacearound thesegmentscanbepartitionedinto ��� 3 con-
vex cells by the following two-phasepartitioning algorithm
(Boseet al. [3] useda similarpartition):

In the first phase,we sweepthe planefrom left to right.
We extend every input segment beyond its right endpoint
simultaneously to the sweepline. If an extensionhits an
input segment, then it stopsthere. If two extensionsmeet
thenthey aremerged into oneextensionasfollows: if their
slopeshave oppositesignsthenboth extensioncontinue as
a horizontal extension; if they have the samesign thenthe
extension whoseslopehassmallerabsolute valuecontinues

andtheotherstops.In thesecondphase,everysegment is ex-
tended beyondits left endpoint in aright-to-left planesweep.
An extensionstopsif it hits an input segmentor a previous
extension. We apply the samerulesas in the first phaseif
two extensions meet.(SeeFig. 4 for anexample.)

Figure4: Disjoint segments anda convex partition.

Thesegments andtheir extensionsform a cell complex in
the plane. Every cell is convex andthe number of cells is
exactly ���¡3 . We say that a portion of an input segment
(or an extension) is an edge of the complex if it lies on the
common boundaryof two cells. Theverticesof thecomplex
arethesegment endpointsandpoints lying on thecommon
boundaryof threecells. Observe that noneof the edges of
thecell complex is vertical.

Wedefineanorientationontheedges:Theinputsegments
have no orientation; an extensionedgeis orientedleft-to-
right (resp.,right-to-left) if it wascreatedin theleft-to-right
(resp., right-to-left) planesweepof the partition algorithm.
Theorientationof anedge{ on theboundaryof a cell

y
is

clockwise or counter-clockwisewith respectto cell
y

. We
useasimplebut key propertyof thecell complex in ourmain
argument:

Lemma 5 If theboundaryof a cell
y

containsedgesof both
clockwiseand counter-clockwiseorientationw.r.t.

y
, then

theboundaryof
y

mustcontain anentire input segment.

Proof. Seethefull paper. |
Using the terminology of [3], we call every connected

component of orientededges anextensiontree. Fromevery
point of anextensiontree,theorientationsleadto acommon
point (root), lying onaninputsegmentor at infinity.

� L¢p t¤£¤$�S?u*�J� O � Q � $R�
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We construct therequired graph in two phases.

First phase. Considera setof bi-chromaticsegmentsand
convex partitionobtained by theabove algorithm. We con-
structa PSLG / k by augmenting the input matchingwith
edgesbetweensegmentendpointsincident to acommoncell.
If a cell

y
is incident to red(resp., blue)verticesonly, then

we addnoedges in
y

. If a cell
y

is incident to bothredand
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blue¥ segmentendpoints thenweconnectthemby aspanning
treewithin

y
:

Lemma 6 For a set ¦ of x red pointsand § blue pointsin
convex position, x)[W§U¨¡3 , onecanconstructa red-bluepla-
nar straight line spanning treein ���Ex��Z§�� time.

Proof. Seethefull paper. |
The resultingbipartitePSLG / k is not necessarilycon-

nectedyet. SeeFig. 5 for anexample. Wecanestablishcon-
nectivity of the points lying on a common extensiontrees,
though.

Lemma 7 Everysegmentendpoint incident to thesameex-
tensiontreeof thecell complexbelongto thesameconnected
componentof thegraph / k .
Proof. Seethefull paper. |

Similarly, verticesof extensiontreeswhoseroots areon
the sameinput segment belongto the samecomponentof
/ k .
Lemma 8 All segmentendpointwhoseextensiontreehitsan
inputsegment© k © F onthethesamesideare in thesamecon-
nectedcomponentof / k .
Proof. Seethefull paper. |

Second phase. We addonemoreedgeto the graphfor
eachconnectedcomponent. Let us denote the connected
componentsof / k by � k []� F [V���V�#[b�`ª , orderedaccording to
the « -coordinateof theright-mostsegment endpoint of each
component(i.e., � k containstheoverall right-mostsegment
endpoint). We describehow to connect thecomponents � k
and � F by a red-blue straightline edgewhile maintaining a
PSLG.Iteratingthisstepleadsto therequiredgraph/ F .

Let ¬ denotetheright-mostsegmentendpoint of � F . Con-
sider the extension tree ­ of ¬ . The root of the extension
treecannot beat infinity, becausethen ­ would be incident
to a segment endpoint ® which lies to theright of ¬ , that is,
®<�Z� k , andby Lemma7, � k and � F wereconnected.As-
sumethat the root of ­ is ¯ and ¯ lies on a segment © k © F .
Since © k © F ��� k , theendpoints © k and © F arenot connected
to � F in thegraph/ F .

Let
y
k and

y
F bethecellsincidentto © k andthe © F , resp.,

on the left side of © k © F . Both
y
k and

y
F are incident to

segment endpoints whoseextensiontreehits the left sideof
© k © F , andbyLemma8belongto � F . Let ¬ k and¬ F denotethe
segment endpointsof � F incidentto

y
k and

y
F , respectively.

Everysegment endpoint incident to
y
k (resp,

y
F ) havethe

samecolor, otherwise � k and � F would be connectedby a
subgraphwithin

y
k (resp.,

y
F ). We concludethatthegraph

/ k hasnoedgeswithin
y
k or

y
F .

Considerthe triangle ° formedby the lines © k © F , © k ¬ k ,
and © F ¬ F . Let ¬)± betheright-most segment endpoint in °�²

�A© k [b© F � . We argue that ¬³±��´� F : If ¬)±�fd¬ k or ¬)±�fd¬ F ,
thenobviously ¬µ±\�¶� F . Otherwise¬)± lies to the right of
both ¬ k and ¬ F . Clearly, ¬'± is a left segmentendpoint and
its extension(an « -monotonecurve),musthit either © k © F or
the extension treeof ¬ k or ¬ F . In any case,the root of the
extensiontreeof ¬µ± lies on © k © F .

·A¸

·�¹º ¸

º ¹
»J¸

»�¼\»�¹

Figure5: Connectingthe componentsof / k in the second
phase.

Finally, notethat © k and © F have differentcolors, andso
¬½±�© k or ¬)±�© F is a bi-chromatic edge. It doesnot crossany
edgeof / k , becausethe interior of ° is disjoint from / k .
Weconnect � k and � F by augmenting / k with either¬ ± © k or
¬½±�© F .

Computational complexity. We cancomputeour color-
conforming planarstraightline spanning treein ���E���I�J�K���
time. Wesorttheright (resp.,left) endpointsof thesegments
in �������I�J�K��� time. Eachsweep-linealgorithm is completed
in ���E�o�����H��� time. The sizeof the resultingcell complex
(togetherwith orientation of segment extensions) is ������� .
We canaddedgesin all bi-coloredcells in ������� total time.
We candetectconnectedcomponentsof / k find complete
thesecondphaseof thealgorithm in ������� time.

¾ ¿ÀS OR! S��%$½� Q ORv �
Wehaveshownthatacolorconformingspanning treeof aset
of bi-chromatic line segments is always obtainable. What
about a color conforming spanningtreewith the minimum
weightwheretheweight is computedasthesumof theEu-
clideandistancesof theaddededges?Givena setof points
in theplaneit is well known thata greedyalgorithm always
providesan optimalsolutionandthesolutionhasno cross-
ings.BoseandToussaintshowedthattheminimumspanning
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treethatÁ augments a setof line segments doesnot have any
crossings[4]. However the minimum spanningtreeof bi-
chromatic line segmentsmayintroducecrossings,asis illus-
tratedby thesmallexample in Fig. 6. It wouldbeinteresting
to exploremethodsfor determining acolorconforming min-
imumweight spanningtreeof a setof bi-chromaticedges.

Figure6: A color conforming minimum spanning tree for
this example is notplanar.
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