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Encompassing Colored Crossing-Free Geometric Graphs

FerranHurtach* Mikio Kand'

Abstract

Given n red andn blue points in the plare and a planar
straightline matchingbetweenthe red andthe blue poirts,
the matchng canbe extendedinto a bipartiteplanarstraight
line spannig tree. Thatis, ary red-blwe planarmatching
canbecompetedinto acrossingfreered-bluespanniig tree.
Suchatreecanbeconstretedin O(nlogn) time.
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1 Introduction

Intercannectiongraghs amongdisjoint objectsin the plane
are fundamentalin computationalgeonetry, the geometic
TSP being a flagship examge. Since a minimum length
TSP tour of pointsin the planehasno self-crassing,inter-
conrection grapls are often thowght of as planar straight
line graphs (PSLGs) Numeous variantsof intercomec-
tion graphproblemswere studiedin recet years,includng
Hamiltoniantours, Hamiltonian paths, and spaning trees
satisfyingvarious constrants.

This paperaddressesvo prablemson conneting disjoint
compmnentof aplanarstraightline graph Thefirst problem
involves color confaming augmaetation of colored grapts
into connectd PSLGs.A secondoroblemis conceredwith
theaugnentationof 2-edye conneted(but morochramatic)
PSLGs. A conneted graphis 2-edje conneted if atleast
two edgeseedto be removedto split the graphinto two or
moreconnetedcompaments.We have thefollowing results.

e Considera PSLGG andsupposeét hask conrectedcom-
ponants. Furthemore,the verticesof G' are coloredso that
no two adjaceh have the samecolor. SeeFig. 1. We shav
thatonecanaddk — 1 straightline edgesto G sothatwe
obtaina conrectedPSLGthatconfamsto the coloring.
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Figurel: Augmering acoloreddisconneted PSLG.

e In particdar, if we aregivena setof n bi-chromaticline
segmerts, we canfind asetof n — 1 edgessothatwe areleft
with a color conforming planarstraightline spanniig tree.
SeeFig. 2.

)

Figure2: Augmeriing disjoint bi-chromaticsegmerts.

o

e Suppose’ is a PSLG consistingof k& 2-edg connectd
commnens. We canadd2(k — 1) edgesto G sothatthe
resultis a 2-edyeconneted PSLG.

e In particular we can augnent a setof & disjoint trian-
gleswith 2(k — 1) line segmentdeaving a 2-edyeconnectd
PSLGsuchthatevery bourdedfaceis atriangle.SeeFig. 3.

Figure3: Augmeriing a setof triangles to obtaina 2-edg
conrectedPSLGsuchthatevery boundedfaceis atriangle.

We offer a constrictive proof for all the above probdems
basedn thefollowing theoren.
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Theorem 1 For any two finite PSLGswhoseplanar draw-
ingsare disjoint, oneof the graphs hasa vertex that seesan
entire edge of the othergraph.

Notethattherolesof two PSLGs,4A and B, in Theaem1
are not symmetric: It is possiblethat A hasno vertex that
would seeanentireedgeof B; in thiscaseavertex of B sees
afull edgeof A. In Section2, we shav thatif the corvex
hull of (drawing of) B doesnotcontainA thenavertex of A
seesanentireedgeof B.

Theoem 1 leadsto anO(n?) time algoiithm to constrict
a color confaming spaning treein the first problemanda
2-ed@ conrectedaugnentedgraphin the secondprablem
for aninput of sizen. In Section4, we provide an alter
native proof for the first problem that canbe turnedinto a
O(nlogn) time algoritms.

Theorem 2 Everysetof bi-chromaic line sgmentswhere
any two segmeits are either disjoint or shae an endmint,
canbeextendedo a color conformingandconrectedPSLG
in O(nlogn) time

1.1 Related previous results

Colored PSL Gs. Geometriagrapls on red-blue pointshave

receved increasingttentionrecently For asetR of redand

B of bluepointsin theplane K (R, B) denots thegeomet-
ric bipartitegrapgh whosevertex setis RU B andwhoseedges
aretheredblue line sggmens. A pathin K (R, B) is nec-
essarilyalternaing betweenred andblue poirts. It is well

known that for n red andn blue pointsin the plane there
is alwaysa crossingfree perfed red-ble matchirg (e.g, by

repeateapplication of thehamsandwit theoem[11]).

For n redandn blue poirts in the plane, K (R, B) does
not always contain a crossingfree Hamiltorian tour [1].
Kanelo, Kano, and Yoshinoto [10] proved that such a
Hamiltoniantour have n — 1 self-crassingsin the worst
case.Kanelo andKano[9] shavedthatif |R| = ©(|B|?)
thenthereis an alternatirg path containirg all red points.
Kanelo [7] provedthatfor any n redandn blue pointsin
the plane thereis a color conforming connectd PLSG of
maximd degree three.

Theseandmary otherinterestingesultsongeanetricred-
bluegraphscanbefound in arecen suney paperof Kaneko
andKano(8].

Encompassing graphs. Givena setof pairwisedisjoint
line sggmeantsin the plane anencompasingtreeis aPSLG
whosevertex setis thesetof sggmen endpants andcontans
everyinput sggmentasanedge.

Noticethateveryencompssingpathconsistf inputseg-
mentsandnon4input segmerts alternately Not evety setof
segmeris admitsa Hamiltonianenconpassingpath. Pach
andRivera-Carpo[12] shavedthatevery setof n sgments
have a subsetof size Q(n'/3) for which an Hamiltonian
enconpassingtree exists. The longestalternatingpath not
crossingary of theinitial n segmentshassize®(logn) in the

worst case[5]. Bose,Houle,and Toussain{3] proved that
evely setof disjoint line segmentsin the planecanbe aug-
mentedo aconnetedPSLGof maximal degreethree.They
canconstrucssuchatreefor n sggmerisin O(nlogn) time.
Later, Hoffmann and T6th [6] proved that thereis alsoan
Hamiltorian encompssinggraph of maximaldegreethree.

2 Proof of Theorem 1

In orderto prove Theoem 1 we first establistthe following
two lemmas.

The proof of thefirst lemmais basedon a resultby Avis
andFukuda [2]. It shavs thata point extemal to the convex
hull of PSLG seesevely poirt of (the draving of) at least
oneedge.Theproofs of bothlemmasareavailablein thefull
versionof this paper

Lemma3 Let a be a point external to the corvex hull
CH (B) of (thedrawing of) a PSLGB. Thenthere exists
anedgee in B sudithata seesall of e.

Proof. Seethefull paper O

Oursecondemmausesa similarargument.

Lemma4 Let «,a9,a4,...,a;,w dende the boundary of
the relative corvex hull of B relativeto A sothata andw
arein B andag,a1,...,a; are areflex chainin A. Then

thereis avertexa;,i € {0.. .k} thatseesan entire sgment
in B.

Proof. Seethefull paper d

Thesetwo lemmasnow establisiTheoem 1.

Proof of Theorem 1. Considertwo PSLGs A and B
whoseplana drawings are disjoint. Assumethat a vertex
of thecorvex hull of A U B is avertex of A (in otherwords,
the corvex hull of B does not containthatof A). We shav
thatavertex of A seesanentireedgeof B.

In the casewherethe cornvex hullsof A andthatof B are
disjoint, we find a vertex a € A for which we can apgy
Lemma 3. Let CH(B) denotethe boundaryof the corvex
hull of B andlet a be a poirt on CH(A). We saythata
bridges CH (B), if therearetwo distinct supprt lines of
CH(B), L, andL, passinghrougha andpointsa andw in
B suchthatthe theregion boundedby L,, L, andCH (B)
contans no point of A exceptfor a. Oneway to find this
bridgeis to "inflate” the corvex hull of B until it hits aver
tex in A. By Lemmag3, a seesanentireedgeof B andthe
visibility is notoccludedby edgesof A either

In the casewherethe corvex hull of B relatve to A is
incident to A let o, ag, ay, ---, ar,w denotethe bourdary of
the corvex hull of B relativeto A sothata andw arein B
andag,ay, ..., ar arein A. It follows from Lemma4 that
thereisana;, i € {0...k} thatseesandentireedgein B.
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3 Applications

For our first applicdaion we consicr a planedrawing of a
graphwith & connectd compamentsandwith verticescol-
ored so that no edgeof the graphis monahromatic. We
wantto addk — 1 edgesso thatwe areleft with onesingle
conrectedcompamentwith no monahromatic edges.

We procee by indudion on the nurmber of compments.
If thereis only onecompnent,thentheinput graphis con-
nected Otherwisewe partitiontheinputin two disjointparts
which we call A and B. It follows from Theoem 1 thata
vertex v of A or B seesat leastoneentireedgeof B or A,
respectrely. Sincenoedgeis morochranatic,either{a, w},
or {a,u} is a color confaming conrectionbetween4 and
B. Augmentthe input graphby this edge: the number of
conrectedcommnentsdrops by one—irduction comgetes
theprod.

For our secondesult,assumehatwe have a plarar draw-
ing of a graphsuchthat eachcompamentof the graph is 2-
edgeconrected. One examge of suchan inputis a setof
disjointtriandes. Suppaethattherearek conrectedcom-
ponetsin theinput. We wantto augmeinthis draving with
2(k — 1) edgesso thatwe have a singlecompnentthatis
2-edee conrected.This prodem closelyresembleshe prob-
lem above wherewe augnentacoloredstraightline drawing
of a planargragh. The only differenceis thatwe conrecta
vertex to bothendpants of thevisible line segmer.

4 Proof of Theorem 2

Our secondproof for the first problemis similar in some
sensego thatof Boseet al. [3]: We constriet a corvex par
tition of the free spacearownd the line sggmers, andthen
addnon-gossingedgesin eachof the corvex faces. Since
thenumker of verticeslying alonga singlefacecanbe arbi-
trary andwe have no contol over thedistribution of redand
blue sgmen endmints incident to a singlecell, we canna
give a bound on the maximal degree of the resultingspan-
ning graph

4.1 Convex partitioning

Assumethat we are givenn pairwisedisjoint sggmentsin
the plane. We assumefor simplicity, that no segmernt is
vertical andthereare no two collinear sggments. The free
spacearourd thesggmentscanbepartitioredinton + 1 con-
vex cells by the following two-phasepartitioring algaithm
(Boseetal. [3] useda similar partition):

In the first phasewe sweepthe planefrom left to right.
We extend every input segmert beyond its right endmint
simultaneasly to the sweepline. If an extensionhits an
input segmen, thenit stopsthere. If two extersionsmeet
thenthey aremeigedinto one extensionasfollows: if their
slopeshave oppositesignsthenboth extensioncontinie as
a horizantal extersion; if they have the samesign thenthe
extension whoseslopehassmallerabsolde valuecontinies
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andtheotherstops.In theseconghasegvery segmentis ex-

tenda beyondits left endhointin aright-to-left planesweep.
An extersion stopsif it hits aninput segmentor a previous
extersion. We apply the samerulesasin the first phaseif

two extensiors meet.(SeeFig. 4 for anexample)

\
[

Figure4: Disjoint segmertis anda corvex partition.

The segmernts andtheir extersionsform a cell complein
the plane. Every cell is corvex andthe nunber of cellsis
exadly n + 1. We saythata portion of an input sggment
(or an extension is an edge of the compex if it lies on the
comnon boundaryof two cells. The verticesof thecomple
arethe sggmen endmints andpoints lying on the comman
bowndaryof threecells. Obsere that noneof the edges of
thecell compleis vertical.

We defineanoriertationontheedgesTheinputsegments
have no oriertation; an extensionedgeis orientedleft-to-
right (resp. right-to-left) if it wascreatedn the left-to-right
(resp, right-to-left) planesweepof the partition algorithm
The oriertation of anedgee on the bourdaryof acell C' is
clockwise or courter-clockwisewith respecto cell C. We
useasimplebut key property of thecell complexin ourmain
amgument:

Lemma5 If theboundaryofa cell C' contansedgesof both
clockwiseand counterclokwise orientationw.r.t. C, then
thebowndaryof C' mustcontan an entire input sgment.

Proof. Seethefull paper d

Using the termindogy of [3], we call every connectd
commner of orierted edge anextensiontree Fromevety
poirt of anextersiontree,theorientatimsleadto acommam
poirt (roof), lying on aninput sggmentor at infinity.

4.2 Two phase algorithm

We construet therequired graph in two phases.

First phase. Considera setof bi-chromaticsggmentsand
convex partition obtaina by the above algaithm. We con-
structa PSLG G; by augmeting the input matchingwith
edge betweersggmentendmintsincidert to acomnoncell.
If acell C' is incidert to red (resp, blue)verticesonly, then
we addnoedgeain C. If acell C' is incidert to bothredand
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bluesggmentendpants thenwe comectthemby a spaning
treewithin C:

Lemma6 For a setP of a red pointsand b blue pointsin
corvex position a,b > 1, onecancorstructa red-bluepla-
nar straightline spannirg treein O(a + b) time

Proof. Seethefull pape. |

The resultingbipartite PSLG G is not necessarilycon-
nectedyet. SeeFig. 5 for anexampge. We canestablishcon-
nectvity of the poirts lying on a comnon extensiontrees
thoudh.

Lemma 7 Everysgmentendpant incidert to the sameex-
tensiontreeof thecell complexbelongto thesameconrected
compmentof thegraph G .

Proof. Seethefull pape. a

Similarly, verticesof extensiontreeswhoseroats are on
the sameinput sggment belongto the samecompnentof
Gi1.

Lemma 8 All sgmentendmintwhosextensiortreehitsan
inputseggmenty; g, onthethesamesideare in thesamecon-
nectedcompomntof G5 .

Proof. Seethefull pape. |

Second phase. We addone moreedgeto the graphfor
eachconrectedcompnen. Let us dende the conrected
commnentsof G, by Ly, Ls, ..., Ly, orderedaccordimg to
the z-coodinateof theright-mostsegment endpant of each
commnent(i.e., L containsthe overall right-mostsegmen
endmint). We describehow to conrectthe compamentsL
and L. by ared-Hue straightline edgewhile maintainng a
PSLG.lIteratingthis stepleadsto therequred graphG».

Let p denotetheright-mostsegmentendmint of L. Con-
siderthe extersion tree T of p. The root of the extension
tree canrot be at infinity, becausehenT' would beincidert
to a sggment endmint s which lies to theright of p, thatis,
s € Ly, andby Lemma7, L, and L, wereconrected. As-
sumethatthe root of T is r» andr lies on a segmen q1¢-.
Sinceq1q2 € Ly, theendmintsq; andg, arenot conrected
to Ly in thegraphG..

Let Cy andC> bethecellsincidentto ¢; andthegs,, resp.,
on the left side of g1¢2. Both C; andC, areincidentto
segmert endpants whoseextersiontreehits the left sideof
q192, andby LemmaB belongto L,. Letp; andp, dendethe
segmern endpants of L, incidentto C;, andCy, respectrely.

Everysegmen endmwintincidert to C; (resp,Cs) havethe
samecolor, othemwise L; and L, would be connetedby a
subgaphwithin C; (resp, C3). We concludethatthegraph
G hasnoedgeswithin C; or Cs.

Considerthe triande A formedby thelines g1¢2, ¢1p1,
andgaps. Letp' betheright-most sggmen engointin A '\

{q1,q2}. We amguethatp’ € Ly: If p' = p; orp’ = po,
thenobviously p’ € L,. Otherwisep' lies to the right of
bothp; andp,. Clearly, p' is a left sgmentendmint and
its extersion (an x-mondonecure), musthit eitherq; g» or
the extensia treeof p; or p,. In ary case,theroot of the
extersiontreeof p’ liesongqy gs.

Figure5: Conrectingthe compnentsof G; in the second
phase.

Finally, notethatq; andg» have differentcolars, andso
p'q1 or p'qq is a bi-chranatic edge. It doesnot crossary
edgeof G, becausehe interior of A is disjoint from G .
We conrectL; andL, by augnentingG; with eitherp’q; or
P

Computational complexity. We cancompute our color
conforming planarstraightline spannig treein O(n log n)
time. We sorttheright (resp. Jeft) endmintsof thesegments
in O(nlogn) time. Eachsweep-linealgoithm is completel
in O(nlogn) time. The size of the resultingcell comple
(togetherwith oriertation of segmert extensiors) is O(n).
We canaddedgesn all bi-colored cellsin O(n) total time.
We candetectconrectedcompnentsof G; find compete
thesecondphaseof thealgoritm in O(n) time.

5 Open problems

We have shavn thatacolorconformingspaning treeof aset
of bi-chromaticline segmernts is always obtairable. What
abou a color conforming spanningtree with the minimum

weightwherethe weightis compued asthe sumof the Eu-
clideandistancef the addededges?Givena setof points
in the planeit is well knawn thata greedyalgoithm always
providesan optimal solutionandthe solutionhasno cross-
ings. BoseandToussainshavedthattheminimum spannirgy
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treethataugmets a setof line sggmers doesnot have ary

crossingg4]. However the minimum spanningtree of bi-

chromatic line segmerts mayintrodice crossingsasis illus-

tratedby the smallexamge in Fig. 6. It would beinteresting
to explore methalsfor determiring a color corforming min-

imumweigh spanningreeof a setof bi-chranaticedges.

Figure6: A color conforming minimum spanting tree for
this exanpleis notplanar
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