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A bandis definedastheintersectionof thesurfaceof a con-
vex polyhedronwith thespacebetweentwo parallelplanes,
as long as this spacedoesnot containany verticesof the
polyhedron. An unfolding of a given bandis obtained by
cutting alongexactly oneedge andplacingall facesof the
bandinto theplane,withoutcausingintersections.We prove
that for a specifictype of bandthereexists an appropriate
edgeto cutsothatthebandmaybeunfolded.
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It haslong beenanunsolved problemto decide whetherev-
ery polyhedronmaybecut alongedgesandunfoldedflat to
a single,nonoverlappingpolygon [7, 5, 4]. An interesting
specialcaseemerged in the late 1990s: 1 can the band of
surfaceof a convex polyhedron enclosedbetweenparallel
planes,andcontaining no polyhedron vertices, beunfolded
without overlap by cutting a singleedge? A bandand its
associatedpolyhedronareillustratedin Fig. 1.
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Figure1: A polyhedroncutby two parallel planes,anda top
view of theresultingband.

This band forms the side facesof what is known as a
prismadoid—the convex hull of two parallel convex poly-
gonsin !#" —but thebandunfolding question ignoresthetop
andbottom faces$ and % of the prismatoid. An example
was found (by E. DemaineandA. Lubiw) that shows that
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bandunfoldings can overlap, if a “bad” edgeis chosento
cut; seeFig. 2.

Figure2: A truncatedtetrahedron canunfold to anoverlap-
pingconfigurationif thewrongedgeis cut.

So the question remained: Does there always exist a
“good” edgeto cut? This paperanswersYES for a special
case:whenthetop $ andbottom % polygonsof thebandare
nestedin thesensethattheprojectionof $ ontotheplaneof
% fallsstrictly interior to % . In thiscasewesaythattheband
is nested(asshown in Fig.1). Intuitively, wemightexpectto
obtaina nestedband if bothplanescut thepolyhedronnear
its “top”. Our argumentprovidesmorethannonoverlapin
thefinal planarstate:it ensures non-intersectionthroughout
a continuousunfolding motion. Moreover, we believe the
argumentshouldextend to capture arbitrary bands.

Band-like constructs have beenstudiedbefore. Bhat-
tacharya andRosenfeld[2] definea polygonal ribbon asa
finite sequenceof polygons,not necessarilycoplanar, such
thateachpair of successive polygonsintersectsexactly in a
commonside.Triangularandrectangularribbons(bothopen
andclosed)have alsobeenstudied. ArtecaandMezey [1]
dealwith continuousribbons. Simplebandscanbeusedas
linkages to transfermechanical motion, as pointed out by
CundyandRollett [3].

There is oneunfolding resultthat is relevant to our prob-
lem, which may be interpretedas unfolding infinitely thin
bands. This is that a “slice curve,” the intersectionof a
planewith a convex polyhedron,developsin theplanewith-
out overlap[6]. This holds regardlessof wherethis curve is
cut. Thus,boththetopandthebottomboundaryof any band
(andin fact any slice curve between), unfold without over-
lap. Sooverlap canonly occur from interaction with thecut
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edge,- asin Fig. 2.
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Theprojection of anestedbandhascertainproperties.Every
vertex is incidentto exactly threeedges.Two of theseedges
belong to oneof thenestedpolygons,andthe third links to
theotherpolygon. Thereareno edge crossings.Theprojec-
tion is partitionedinto quadrilaterals,eachcorresponding to
partof a polyhedralface.Sinceeachfaceis flat, thequadri-
lateralsin arein fact trapezoids whereedgesfrom the inner
and outer polygonsare parallel. Unlessmentioned other-
wise,all argumentsin thissectioninvolve theprojection of a
band.

We continue with somedefinitionsthat arenecessaryto
describetheunfoldingmotions:

An edgeof a bandis a hinge if it waspartof an edge of
thegivenpolyhedron. All hingeshave anendpoint on each
of thegivenparallelplanes.

After cuttinga singlehinge, a flattening motionis a con-
tinuous motion during which eachfacemoves rigidly but
remainsconnectedto eachadjacentfacevia their common
hinge, and the resultingconfiguration is planar. If no in-
tersectionoccurs during the motion, thenthis motion is an
unfolding.

A planarchainis convex if joining theendpointswith an
edgeyieldsaconvex polygon.

A non-convex chainis weaklyconvex if weencounteronly
left (oronlyright) turnsaswetraverseit, andjoiningtheend-
pointswith anedgeyieldsa polygon which hasno exterior
angleslessthan = > .

Any chainthathasonly left (right) turnsbut is notconvex
or weaklyconvex is a spiral.

The interior angle at a vertex of a spiralor convex chain
is thesmallerof thetwo anglesat thevertex. Exterior angles
aredefinedaccordingly.

Thenormalconeof avertex ? belongingto aconvex poly-
gon is the region betweentwo halflinesthat begin at ? , are
respectively perpendicularto thetwo edgesincident at ? and
arebothin theexterior of thepolygon.

We saythata point is to theleft (right) of a segment@3A if
it is to theleft (right) of adirectedline through @3A .

Whenanedgeof agivenbandis cut,thetwo convex poly-
gonsin theprojection mentionedabove arecut into (degen-
erate)convex chains.Supposethatwebegin aflatteningmo-
tion by “squeezing” the two parallel planesandkeeping all
verticesof the bandon the planes. Sucha motion will in-
creasethe interior angle at every vertex in the projection.
Furthermorean interior anglecanonly opento B . Thusin
theprojection aconvex chaincannot self-intersectaftersuch
a motion. Proofs for theseclaimsareomittedhere. All of
ourproofs involve this specificmethodof flattening.

Theprojectionof a bandis relatedto theactualflattening
motionof a bandasfollows: let C�D betheverticalseparation
betweenthetwo planes,$ and % . Thetwo planeswill move

towards eachother, always remaining parallel. Verticesof
the hingeswill alwaysremainin the planes. Let E be one
bandface,the hull of parallel edges F5G�F > and H3G�H > . C D is
determinedby thedihedral angle at F5G�F > betweenE andthe
baseplane% . At any onetime,the I�J pictureis anoverhead
projectionof the KLJ band,with C decreasingfrom its initial
value C D to M , at which time it is entirelyflat in the % plane,
i.e. we havea uniform squashingof thebandby lowering $
until it meets% . For any faceE , thevalueof C determinesits
dihedral anglewith respectto % . Theopening of theconvex
chains,visible in theoverheadview representstheturning at
eachhinge,necessaryto accommodatethevarious simulta-
neous dihedral motions.

Let theverticesof the innerpolygon beorderedin clock-
wise order, andthe cut hingebe incidentto vertex HON . We
hold H NQP G�H N fixed horizontally in the planeandrelabelthe
newly createdendpoint as H �

. Correspondingly, for theouter
polygon, the direction of F NRP G�F N remainsfixed (it moves
away from H NRP G�H N but remainsparallel)and F �

is a “mov-
ing” endpoint. Thusthecut edgeis split into edgesH N F N and
H � F �

. Thesedefinitions areillustratedin Fig. 3.
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Figure3: Left: projectionof theinnerconvex chainandpart
of theouterchain. Theconeof a vertex HON is shown, aswell
astheprojectionof thepolyhedraledgeincidentto HSN . Right:
theresultof cuttingat HTNUF�N andflattening.

Notice that the projection of the hingeincident to HVN be-
comes longerafterflattening.

Lemma 1 A flattened bandcannot producean inner chain
that is a spiral.

Proof. Duringourtypeof flatteningmotion H � H�NXW G canonly
rotateclockwise,becauseall joints openclockwise,andthe
centers of rotationat thesejoints areall left of HYNXW G H �

. LetZ
betheregion that is to theright of thetwo half-linesthat

form thenormalconeof HYN . As theunfoldingmotionbegins,
H �

canonly move within
Z

. This canbe seenby opening
eachanglesuccessively in clockwiseorder, startingwith the
angleat H NXW G . Also, it follows from Cauchy’s arm lemma
(see,e.g.,[8]) thatnotwo pointsonanopening convex chain
approacheachother. Eventually H �

may endup anywhere
within

Z
or in the region to the right of H NQP G[H N , but only

after tracinga clockwisemotionabout H\N . Consequently, a
flattenedbandcannot producea spiral. Also noticethat the
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final direction] of H � F �
will alwaysbe moreclockwise than

thefinal direction of HTN^F�N . _
Lemma 2 If aflatteningproducesaninnerchainthatis con-
vex thentheband canbeunfolded.

Proof. If intersectionis to occur, thensomepartof theinner
chainmustcrossthrough H N F N or H � F �

. This follows from
the resultson slice curves, mentioned in the introduction.
Fromtheargumentsof theprevious lemma,we seethat the
innerchainwill beconvex throughout themotion. Sincethe
directionof H � F �

is alwaysmoreclockwisethanthatof H�N`F�N ,
theendsof thebandcannotintersect. _

Thesametypesof argumentsmaybeusedtoprovethatwe
cansafelycutalongany hingewhereFLN is locatedwithin the
normal coneof HTN , or any hinge incidentto anacuteinterior
angle.

We now characterize the typesof chainsthatmaybeob-
tainedaftera flatteningresultingfrom a cut at H\NUF�N . We say
that a chain is “safe” if it is convex. Thereare two types
of “dangerous”chains,depending on which endpoint is not
on thehull (clearlyoneof thetwo endpointsmustbeon the
hull). Supposethat HTN is noton thehull of theopenedchain.
A problemmightariseif H�N^F�N wasinitially to theright of the
normal coneat H3N . In otherwords, H � might crossthrough
H5NUF�N . In this casethechainis “unsafe” (seeFig. 4). We note
that if the whole flatteningmotion is observed, it is possi-
ble that this crossingmight happenbut in thefinal position
therewill beno intersection(i.e. H � andall successiveedges
might crossout again). In otherwords, the term “unsafe”
servesjust asa warning. Even under theseconditions there
maybeno intersection atany timeof theflatteningmotion.
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Figure4: Cuttingat H N is “dangerous” if H �
endsup above

thedottedline. In this casethecut is labeled“unsafe” if the
hingeat H�N (shown dashed)is to theright of its normal cone.
A symmetric dangerousandunsafecaseexists for theother
sideof thecone.

As mentioned, therearetwo typesof dangerousunfold-
ings,andin eachcasethereis only a potentialproblem if a
hingelies on a specificsideof its associatednormalcone.

Clearly if a givenbandcannot unfold with our motion then
all verticesareassociatedwith unsafe openings.

Lemma 3 Not all hinges can be to the left (or all to the
right) of their associatednormalcones.Thusnotall vertices
canhavethesametypeof unsafeproperty.

Proof. It isenoughto lookattheinitial projection toseethis:
supposewithout loss of generality that on the inner chain
all hingesare clockwiseof their respective normal cones.
Take any trapezoid with height a (measured in the projec-
tion). The trapezoid belonging to the next edgeclockwise
musthave height greaterthan a . This continuesaround the
convex polygonuntil we reachtheoriginal trapezoid which
would have to have height greaterthan a . So somewhere
thereis a vertex H3b whosehingeis counterclockwise of the
normal coneat H b , while thehingeat H b�W G is clockwiseof
its respective cone. _

Supposethat we have locatedtwo successive verticesas
describedin thepreviouslemma.For thecutsatbothvertices
tobeunsafe,in eachcasesomeportionof edgeH b H b�W G is not
on theresultinghull of theinnerchain(seeFig. 5). In other
words thetypeof dangerousopening cannotbethesameat
bothvertices.

k k+1a a

Figure5: The typeof dangerousopening (indicated by the
curves below the labeledvertices)must alternatebetween
somepairof successivevertices.

Lemma 4 Cuttinga hingeincidentto either H b or H b�W G (de-
finedin theprevious lemma)mustresultin a chainthat is not
unsafe.

Proof. Let us begin by cuttingat Hcb�W G . As usual,we hold
H	bdH	b�W G fixed horizontally andopenall angles. Newly cre-
ated H �

mustendup in theupper-right quadrantof Heb�W G , in
order to havethenecessarytypeof dangerousopening. Now
we make a new cut at HTb , andtranslatethe entireunfolded
chain(exceptthefixededge)sothat H �

re-attachesto H3b�W G .
We let thetranslatedcopy of H b retainits label,andcall the
horizontaledgeH � H b�W G . Noticethat H b mustbein thelower
left quadrantof H �

(seeFig. 6).
Now we have a new opened chain,except that we have

not takencareof theopeningsat theangles of H b and H b�W G .
Since H	b�W G H	b�W > (previously H � H	b�W > ) hadrotatedclockwise
in thefirst unfolding, andwe havemerelytranslatedit back,
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Figure6: Left: anunfoldedchain.Right: translatingpartof
thechainsothatthecutvertex is switched.

we mustrotateit counterclockwise to returnit to its initial
orientation. We mustthenfurther rotateit counterclockwise
in order to opentheinterior angleat HVb�W G . Theentirechain
will rotaterigidly as well. Thus H b cannot crossinto the
upper-left quadrant of H �

. Now noticethat during the first
opening, edge H bfP G�H b rotatedclockwise,due to the open-
ing of the angleat H b . So we might expect that in order
to compensatefor this in our final diagramwe shouldrotate
H bfP G[H b counterclockwise(whichmightcauseH b togoabove
the horizontal line). After all, if a cut is madeat Hcb , then
H	bfP G H	b must rotatecounterclockwisefrom its initial posi-
tion, but now it is clockwise.However, sincetheopening of
theangleat H3bfP G wasincludedin thefirst opening, andthis
hasnotbeentamperedwith, thenedgeHVbfP G H	b mustbein its
correct position.Thecounterclockwisemotionproducedby
adjustingtheangleat H�b�W G is enough to make thedirection
of H�bfP G H	b morecounterclockwisethanit wasinitially.

Thismeansthatcuttingat HTb leadseitherto thesametype
of dangerousopening as H\b�W G or to a safeopening. We con-
cludethatanopening which is not unsafeexistseitherat HOb
or at H b�W G _

Sincewe canalwaysfind a vertex to cut sothat the inner
chainopensto a positionthat is not unsafe,we canalways
find an edgeto cut alongso that a nestedbandcanbe un-
folded:

Theorem 5 Everynestedbandcanbeunfolded.

g hO85i j�lkj�

In a closedband, verticesareallowedon theparallelplanes
of theslab. We claim thatall closednestedbands mayalso
beunfolded,though proof is omittedhere. We alsobelieve
thata more complex proof establishesthatall bands maybe
unfolded. Evenwith it establishedthatarbitrary bandsmay
beunfoldedwithout overlap, it remainsinterestingto seeif
thiswill leadto anunfoldingof prismatoidswithout overlap,
including thetopandbottompolygons $ and % . It is natural
to hope they could be nestledon opposite sidesof the un-
foldedband, but it is notobvioushow to ensurenonoverlap.
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