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Making Contour Trees Subdomain-Aware
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Abstract

We descrife a simpleandefficient algorithmfor compuing
avariantof a contaur treethatdescribesfor eachcontou c,
thenumbe of connetedcompnentsn theintersectiorof ¢
with afixedsimply conrectedsubdmainS. Thealgaithm
requiesO(n + tlogt) time,wheren is thesizeof theinput
meshandt is thetotal numberof critical poirts of the scalar
field F andof therestrictionof 7 to S. We shav how to use
our algorithm to labelthe edgesof the contair treeof a 3D
scalarfield with competeinformationonthetopolagy of the
correspndirg contairsin O(n + tlogt) time.

1 Introduction

Contou trees(CTs)areconsideed animportant tool allow-

ing oneto conciselydescrite the structue of isosuraces in

volumedataaswell asthe way they evolve andinteractas
theisovalueis varied. A CT canbe definedas a quotient

spaceD/ = whereD is thedomainof a scalarfield F and,
for z,y € D, x = y if andonly if z andy belongto the
samecortour, i.e. a conrectedcomponern of a setof the
form F~1(c) for somescalarc. A scalarfield is typically
represeted asa simplicial comgex with valuesat vertices
or areguar (rectilinear) grid of samplesLinearor multilin-

earinterpdationis usedto obtainvaluesat pointsotherthan
the samples. Most scalarfields that appearin applicatiors
are definal on simply comecteddomairs. In this casethe
CTisindeedatree.

Contourtreesbeenusedasa tool to enhare scalarfield
visualization[1], speedup certaintypesof queriesin geo-
graphcal information systemsg[2] and facilitate isosuraice
extractian from volumedatasetdy helpingto computesmall
seedsets[5, 6]. Theseapplicatioms motivated efforts to de-
velop increasinty simpler fasterand more generalalgo-
rithms for computing contaur trees. An O(nlogn) algo-
rithm for computing the contaur treein two dimensios was
givenin [2]. A simplerversionof the 2D algoithm and
an O(n?) algorithm for highe dimersionsis given in [5].
An O(n log n) algorithm thatworksin threedimensios was
proposedin [9] andsubsequety simplifiedandgenealized
to ary dimensionin [3]. An O(n + tlogt) implemenation
of this algorithmis descriledin [4]. Thework [8] describes
amethodfor labelingtheedgeof thecontou treewith Betti
numtersin O(n + tlogn) time wheren is the size of the
meshandt is thenumberof critical points.
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The original motivation for this pape was to improve
the algorithm for labeling contair tree edgeswith Betti
nunbers of their associatectortours introducedin [8] to
give compete topdogical information abouteachcontaur,
and to do so without increasingthe asymptdic rumning
time. Contous in 3-dimersionalscalarfields areorientale
2-manifoldswith bourdary. The well-knownn classification
theoem for 2-mairifolds [7] statesthat any orientalbe two
dimersionalmanifdd is homeanorphic to the sphee or to
a conrectedsumof somenumbe of two-dimersionaltori.
An orientable 2-manifold with boundaryis homeanorplic
to the sphereor a conrectedsumof tori with somenumker
of disjoint topologdcal disks removed, thus the bourdary
is commsedof a nunber of disjoint “loops”. The Betti
nunbersdo not provide enoudp informationto discriminate
the topolagy of a conrected 2-marfold with bourdary
For a conrectedsurface of genws g with k disjoint disks
removed,its Betti numbersaregivenby:

_ | 24 ifk <1 _Jo
ﬂo_l?ﬂl_{2g+k—1 ifk>1 :/32—{1

In particdar, this meanghatit is impassibleto distingush a
torus with onedisk removed from a double toruswith three
disksremored by looking at the Betti numbersalone. The
topdogy of a surfacewith a bourdary canbe uniquely de-
termired if oneknows boththe number, &, of its bourdary
loops, andtheEulercharateristicy = 82 — 51 + fo. A spe-
cial caseof thealgoithm discussedh this papemprovidesan
efficient way to labelthe edgesof the contaur treewith the
nunber of boundary loops of the correspading contous.
Togetter with amethal of labelingthe edgesf the contou
treewith the Euler characteristiéntroducedin [8] onecan
labelthe edgesof the contaur treewith numtersproviding a
competedescripion of the correspondig contou topology.
Ouralgorithm requiresO(n + tlog t) time andis applicalte
to scalarfields represeted by both structued and unstric-
turedmeshesilt takesadwantageof therelatiorshipbetween
two contou trees:

1. Therestrictedcontaur tree (dended by Trestricted): CON-
tour treefor the scalarfield F restrictedto the given
subdmains.

2. Thefull contou tree (derotedby Tu1): contar treefor
theentiremeshC augnentedwith the critical pointsof
F restrictedo S.

Thedomiratingcostis thecostof compuing thesetwo trees.
Oncethey arecomputed,the numter of conrected‘subcon
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tours” of eachcontou whenit is restrictedto S canbe as-
signedto theedgesof Tr. in timelinearto its size.

Anticipating otherapplicatios of this techniqe, we de-
scribeit asageneal methodof makingeachcontaur ¢, repre-
sentedasanedgein g1, avareof thenumbe of conrected
commnentof cN S. For exanple, onemaybeinterestedn
finding contaursthatintersecta given cross-sectiothrowgh
avolume datasett two closedcurveswhile intersectingan-
othercross-sectioatoneclosedcune. Ouralgorithmcanbe
usedto provide informationabou isovaluesthatwould lead
to thesetypesof contous. We definea subdonain-avare
contair treeasa cortour tree 7 eachof whoseedgese is
eachlabeledwith the nurmber of conrectedcompamentsof
ce NS for asubdanain S (wherec, denotesa contaur rep-
resentedheedge e).

2 Example

Beforewe proeedto formal descriptionof our algoithm,
we illustratethe undetying ideawith a simple2D exanple.
Considemheightfield whosecontou plotis shavnin Figure
1. Recallthatby a critical point we meana point wherethe
local structureof contous changs. The mostobvious criti-
cal pointsarelocal maximaandlocal minima. Thisis where
contairsappearanddisapper (resgectively) astheisovalue
is decrased. Apart from local extrema thereare critical
points at which contairs merge, split or chang topdogy.
For exame, at B the contou which appearsat G changs
topolagy (from topolagical loop to a line segmert). At H it
mergeswith the contair thatappearst 1. As theisovalueis
decreasedhis contaur hits the boundaryof the datasett F
andis split into two contaurs, one of themdisappeang at
A shortly after the split andthe otheroneuncdergoing more
comgex evolution. (Figurel). If necessarythe contou tree
canbe augnentedwith extra vertices. In our case,we will
usea cortour tree augnentedwith critical points of F re-
strictedto S (the union of the threeintervals AO, EQ, and
LN, shovnasdashedinesin Figurel). In ourcasethereare
threecritical points(L, M, andN) of therestrictedscalarfield
thatareregular(i.e. notcritical) pointsin the full datasetM
is alocal maximum of therestrictedscalarfield. At L andN,
two contaursin therestriction(onearriving from above, one
alongthe horizontalinterval) meige to form a contou mov-
ing down along eitherthe left or right edgeof the dataset.
By theheightof a vertex of a contaur treewe shallmeanthe
scalarvalueof the correspndirg poirt in the scalarfield.
The contou treesTru and Trestricted fOr the heiglt field
F andsubdonain$ asshavnin Figurel areshown in Fig-
ure 2. Consideranede e in the Trestricted- BECAUSE g1
contairs all critical pointsof therestrictecheightfield, end-
pointsof e areverticesof 7¢,;. Thereis a unigue shortest
pathjoining thetwo vertices.In fact, this pathis mondonic
(i.e. visits verticesof Tg,; in the orderof eitherincreasing
or decreaingscalarvalue). Thisis particulaly easyto seeif
the contaur treesarethoudht of asquotiert spaces.Then,e

Figurel: Contourplot of the exampleheightfield. Local maxima
areshavn asblackcircles,local minima- asblack squaresTrian-
glesindicateothertypesof critical points. Pointsthat areregular
but arecritical in therestrictionof the heightfield to thesubdanain
(indicatedby dashedines, the union of theleft andright edgesof
thedomainandtheline LN connectingthe two) areshovn ashol-
low triangles(L, M, andN).
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Figure2: Left: contourtree(its edgesareshavn assolid lines) of

theheightfield shavn in Figurel. Right: contourtreeof the height
field shawvn in Figure1 restrictedto the subdanain.

E

canbeviewedasa continwousincreasingpathin 7restricted -

Theinclusionmapfrom § into C yields a continlous map
t = Trestricted — Trur1- Applying this mapto the pathinduces
anincreasingpathin 7,1, whoseendpants arethe sameas
endmintsof e.

In Figure2, the pathscorrespondig to edgeof Trestricted
areshown in dashedines (herceforthrefered to as“sub-
contaur paths”). Clearly, givena contou ¢, the numter of
conrectedcommnentsof ¢ N S is equalto the size of the
preimageof the correspadingpointin 7¢,; uncer the map
t. This numkeris the samefor all contous correspadingto
anede e of Ty It canbecomputedasthenumker of times
e is traversedby a subcatour path. The simplestway to
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Figure 3: Subdmain-avare versionof the contou treein
Figure2.

compte thesenumberswould be to walk eachsubcontar

pathandincremant a counter associatedvith eachedgeof

Trun €achtime it is traversed.However, this canpotentially
resultin quadratic comgexity. Therwefore,we insteadusea
methodsimilarto [8]: Noticethatfor ary vertex v of Tg,;; we
have thefollowing relationinvolving thelabelson theedges
outof v: thedifferencebetweerthetotal nunmberof timesall

edgegyoing down from v aretraversedby subcontar paths
andthetotal nurmber of timesall edgeggoingup from v are
traversedby subcomour pathsis equalto eitherzeroif v is

not presenin Trestricted (€.9-J0Or P in Figure?2) or the dif-

ferene of the numter of edgesgoing down from » andthe

numter of edge going up from v iN Trestricted (€.9 M Or
K). Thisallows oneto computetheedgelabelsin lineartime

by greedly selectingandsolvingonewith justoneunkrown

variable. In our exanple, thelabelsfor edgeof the contaur

tree(shavn in Figure 3) can,for exanple, be computedfor

the edgesin the following orde: BG, HB, HI, FH, AF, JK

JK,CD, ED, DJ,MJ, PM, OL, LP, PN,NQ.

3 Summary of the Algorithm

Theinput to ouralgorithm consistof:

1. A piecavise linear scalarfield F specifiedas a simply
conrectedsimplicial comgex C with scalarvaluesat
vertices

2. A subdonain,asimply conrectedsubconplex S of C.

As theoutput, we producethesubamain-avare contair tree
T, whichis acontou treefor theinputscalarfield with non-
negdive integer labelsassignedo edges. The label of the
edgee is the nunber of conneted compmentsof ¢, NS
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(whete ¢, is the contaur represeted by e). The vettices of
T arethe critical pointsof F andthe critical points of F
restrictedo S.

Critical points can be definedas vettices of the doman
for which the lower or upper link is either empty or has
more thantwo conrectedcompaents. The upper(respe-
tively lower)link consistf all simpliceg(of ary dimension
whosevertices areall adjacento v andhave valuesgreder
(resp. lower) thanthe valueat v. All verticesthatare not
critical arecalledreguar.

Ouralgorithm first computesTeu andTrestricted, @aNdthen
usesthe structue of thesetwo treesto find the edgelabels
onT.

3.1 Contour trees

Thecontaur treesTry and T estricted arecomputedusingthe
algoithm of [4] in O(n+tlogt) time,wheret is thenumker
of verticesin theoutputtrees.In our case apartfrom critical
points of F, thetreeTs,;; mustalsocontan thecritical points
of F restrictedo S (someof themmayberegularrelativeto
thefull doman, e.g.L,M andN in Figurel).

3.2 Edge labels

Now we proceedto compuing theedgelabels.For eachver-

tex v of thetree Ty, let U (v) (respetively, L(v)) betheset
of verticesadjacentto v with larger (respetively, smaller)
height. For a vertex v of Trestricted, dende by d*(v) (re-
spectvely, d—(v)) the nunber of vertices adjacentto v in

Trestricted With larger (respectiely, smaller)height. Finally,

for avertex v of Trun let A(v) bezeroif v is nota vertex of
the Trestrictea @Ndd™ (v) — d~(v) othe@wise. An argument
outlinedin the previous sectionshavs thatfor eachvertex v

of Trun thefollowing equation holds(n . is theedgelabelfor
anedgee):

Y Ny = D Powy = Av. (1)

weU(v) u€L(v)

Thisis asystenmof linearequations,in whichtheedgelabels
areunknowns, with the samestructureasequatios for Eu-
ler charateristic of contairs discussedn [8] andit canbe
solvedin the sameway. Theideais to solve the equatias
in an order which ensurs that thereis only one unkrown

with undetemined value in eachequationbeing solved at
ary time. We maintaina tree Tyniabeled, Which is the sub-
treeof Tra1 Whoseedgeshave notyet beenlabeled andfor
eachvertex v of Tunlabeled, We Storeanumterdel t a( v)

definedby the left-hard side of equatim (1), whereU (v)

and L(v) areinterpreed in the senseof Tynlabeled: When
Tunlabeled = Trun, We havedel t a(v) = Awv. We alsouse
aquete of leafedge of Tuniabelea @Sanauxiliary datastra-
ture. Initially, Tuniapelea CONtairs all edges of 7g, andthe
quete contairs all its leaf edges.In aloop, we take anedge
e outof thequaueandsolwe its equatian (whichwill alread
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be solvedup to a + signby thetime e entersthe queue)to
obtainthelabelfor e, andthenremove e from Tyniabeled, UP-
datingdel t a( v) for thevertex v of e thatremainslf, asa
resultof thatremoval, v becanesa leaf vertex, we insertits
correspndirg leaf edgeinto the quetle. Thewhole process
terminatesvhenthe quaue becoms emptyandlabelsof all
edgesof T, areknown. Clearly, the whole process takes
O(t) time.

4 Application: full description of contour topology
for 3D scalar fields

By applying our algoithm to a scalar field definedon
a simply connectedtetrahedal meshembeldedin the 3-
dimensimal spacewith the subdonain beingthe boundary
of the doman, onecanlabel edgesof the contou treewith
thenumbersof thebourdaryloopsof thecorresponéhg con-
tours. Thealgorithmof [8] canbeusedto labelthe edges of
the sametree with the Euler characteristiof the contars.
Both labelsprovide compete informationabou the contaur
topolagy. The contou treetogetter with bothlabelscanbe
computed(for generaketrahedal meshes)n O(n + tlogt)
time,wheret is thesizeof theoutpu tree(equalto thenum-
berof verticesof theinputmeshthatareeithercritical points
relativeto thewholedomainor its boundary). Thus,by using
thealgorithm of [4] to computetheinitial cortour trees,we
improve therumingtime of [8], andalsoprovide acomgete
descriptim of cortour topology in threedimersions,while
presening theaymptdic runnng time of O(n + tlogt).

5 Summary

We have descritedasimpleandefficientalgorithm thatcom-
binesprior algorithmsfor computing contou treesandusesa
similartechnigieto thatin [8] to labeltheedgesof acontaur
tree,in orderto answemquestiorthat,to ourknowledge,has
notpreviously beenanswerd: “Canoneefficiently compue
the compete topolagical informationfor eachcontaur of a
contaur treerepresentinga datasetn R3?” We have showvn
thatthis canindeedbedore in O(n + tlogt) time. Unfor-

tunatelyin higherdimensiams howvever, a completeclassifi-
cationof all topologcal manifolds is yet to be found. We
have alsonoticedthatour algorithm naturdly generéizesto

computing the nunber of comectedcompnentsof the in-

tersectionof eachcontair ¢ with a fixed simply conrected
subdaenain$, andcanbeimplemernedin ary dimensionon
ary type of mesh,a direct resultof the fact that the exist-
ing algorithm [4] for computing the contou treecando so,
andthatouralgoithm reliessolelyupa having a pair of in-

put contou trees,not on the original dataset. We believe
this genealized algoiithm may find other applications be-
sidesour origind goal.
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