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The Box Mover Problem

ValentinPolishchuk

Abstract

We shaw that the optimization problem is NP-hardfor a
wide classof motion plannirg puzZes, includng classical
SOKOBAN. We investigatea new prodem, the Box Mover
Problem(BMP), in which the agentis allowed to lift and
carryboxeson arectilineargrid in order to rearraagethem.
Someclassicalmotion planring puzZes arespecialcaseof
BMP. We alsoidentify a naturalclassof BMP instancesfor
which optimizationis in NP, makingthe optimizatian prob-
lemsfrom the classNP-compete.

1 Introduction

Thereis a numbe of motion planring puzzlesin which,
given an arrangmentof unit blocks (boxes) in the plane,
onehasto rearangethe boxesinto andher configuationby
operding a roba which movesin the sameplaneamid the
boxes. Theclassicalexanpleis SOKOBAN. ([8] providesa
thoraughdescripion of the puzzlesandcorrespondimg algo-
rithmic results.) The puzzleswe considertheremay be clas-
sifiedaccordim to thefollowing charactestics (the classifi-
cationis adaptd from [5]):

1. How powerful therobot is:
e Canthe robot pushthe boxes? How mary at a
time?
e Cantherobotpull the boxes?How mary?

e We introducea “new dimensim” for the robd:
canthe robot lift a box andputit to an adjacen
position (including the position occipied by the
robot before thelift)? Thenew problemis dutbed
theBoxMover Problem(BMP).

2. Boxtypes

e Are all boxes movale, or are somefixedto the
plane?in otherwords, arewe workingontheinfi-
nite plane with nothirg elsebut theboxes onit, or
arewe constrairedto afloor bourd by rigid walls?

3. Robotpath

e Is the solution path requred to have no self-
intersectios?

e Are we looking for a closedpathfor therobot?
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4. Boxes’IDs ("15"-style)

e Are the boxes and the target positionslabeled?
This may be important with respectto the final
configuationof theboxes; in SOKOBAN ary box
canoccupy ary targetposition

Following notatian in [5, 6, 9], we call BMP(k, p, 1) the Box
Mover Problemfor the robot capableof pushirg &, pulling
p andlifting [ boxes at onetime. If someboxes may be
fixedto the plane,the prodem is calledBMP(k, p,1)-F. If
only nonself-intersectig pathsare allowed for the robd,
the problem is called BMP(k, p,1)-X. We do not require
the robot to returnto its initial position it can stop right
after all the boxes arein their taget positions. Finally, if
the boxes andthe target positionsbearlabels,the prodem
is called #BMP(k, p,1). Thus, e.g.,BMP(1,0,0)-F is the
original SOKOBAN game BMP(c0, 0o, o0) is theOmnipe
tentRobotProblem(they alsohave prodems),BMP(k, 0, 0),
BMP(c0, 0,0) andBMP(1,0,0)-X arethe Push%, Push-*
andPush-Xversiors of Push(se€[8]).

To clarify rulesfor lifting, we emplasizethattherobot can
essentially‘'go under” abox it canappoachthe box, swap
positiors with it andthenputthe box back Suchanopea-
tionrequiresz2 lifts. Theroba canalsocarryaboxto anotter
location Wethink of suchcarnjing asasequeneof lifts; the
nunberof necessarlifts equalsthe distanceraveledby the
robot with the box.

It is possibleto comeup with otherrulesfor lifting. With
someadjustmentpur resultsremainvalid for otherrulesas
well.

1.1 Comparison with Previous Work

1. To our knowledge, previous researchconcerratedon
investigatinchardnasof thefeasibilityproblems,while
in “reality” onewould ratherbe interestedn minimiz-
ing the amouwnt of work to be dore (i.e. in the opti-
mizatior) whenit is ensure thatthe problemis feasi-
ble. We definethe costof a solutionto be the numter
of “loaded moves (pustes, pulls, lifts); the unloaded
motion of therohot is free.

Theonly resultson optimizaion of SOKOBAN canbe
found in [14]. We have taken the basicedgegadget
from it. Theseresultswere never publishel and used
third dimersionto work or consideed a slightly mod-

fied SOKOBAN problem[3].

2. Several attemptshave beenmadeto make the puz-
zles"moretractable™y limiting therobad’s capaliities
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[4, 5, 7], i.e. by consideing BMP(k, p,l) with I = 0
andsmallvaluesof k, p satisfyingkp = 0. The exact
complity of someof the prodemsis still unkrown;
othershave beenshavn PSRACE-compete [1, 2, 11].
The only known “easier” (NP-canplete)prodem is a
someavhatartificial Push-Xversion(seeabove), which
restrictstherobad’s paths ratherthanits power.

Our proof of NP-harchessof the optimizationproblem

holdsfor anarbitrarily powerful robot. We alsodescribe

a natura classof openBMP instancesfor which the
optimizatian problemis in NP,

3. Leakagis amajorprodemin proving hardressof puz-
zleswith all blocksmovable. To constrainthe robot’s
motion certainconfiguationshave to be used: e.g., if
therobot canpushupto k£ boxes,a (k + 1) x (k + 1)
squareof boxescanbe consiceredfixed to the floor, a
wall of thicknessmorethank canbe considredrigid
[4, 7], etc. Sameconfigurationswork for constraiting
of a pull-only roba - oncedisassembledheseconfig-
uratiors cannever be puttogether Yet, if theroba can
both pull andpush(or lift), thenno obvious construc-
tion (if ary at all!) is “heavy” enowgh to sene asan
obstaclédor therobot.

In our proof thewall thicknessis constahandthe proof
holdsfor anarbitrarily powerful robot.

4. In [4] and [7] the authos cortrastedtheir work to
“all previous appoachesof building circuits basedon
grapls, which seemto inheently require [prodem-
atic] crossing” In fact, oneof the first prods of NP-
hardressof SOKOBAN [9] wasbasednPlanar3-SAT
prodem anddid notuseary cross@ers. Our construc-
tion doesnot require crossingither sinceit is by re-
ductionfrom HC for planar graghs.

2 The Reduction

The redwction is from the Hamiltonian cycle (HC) prob-
lem for planardirectedgraphs with eachnodev satisfying
outdegree(v) + indegree(v) = 3, which is NP-comgete
by [13]. Let G = (N, A) be sucha graphwith [N| = n.
We construt a BMP(1,00)-F instancefrom G suchthatG
contairs a HC iff the BMP instanceis solvablein 3n — 2
pushes.

First,embed7 in the planein suchawaythattheedgesf
G aredravn with verticalandhorizontalsegmentqFigure 1,
left andcente}. Suchanembedling is possibleandcanbe
constretedfrom G in polynomialtime[12]. Wethenusethe
embedingasa“floor map”for constructiig aBMP(1,00)-F
instance Eachedgeof G beconesa corrida of width 1 and
every nodeof G becanesa “T-intersection” of 2 corridors
(Figurel, centerandright). Next, we placea nock gadget
(Figure?2, left) in eachnodeof G andan edge gadeet (Fig-
ure2, right) in themiddleof every edgeto emulatethedirec-
tion of theedge (We mayneedto lengtlenthe corridas to

Figurel: Planarembedihg andfloor map.
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Figure 2: Node (left) and edge(right) gadyets. Boxes (in

their initial positiors) aremarkedwith X, boxes’ target po-
sitionsaremarkedwith light grey

have enoudp spaceor insertingtheedgegadgets.)Notethat
in the edgegadget, theinitial andthetarge positionsof the
box coindde. It is easyto seethatthe edgegadget is pass-
ablein onedirectiononly (with 2 pushegereachpass).The
robot is initially placedinsidea corrida. Therobd's goal
will beto puttheboxesin thetarget positions.

If G hasan HC, thenthe constreted BMP(1,00)-F in-
stancecanbesolvedin 3n — 2 pushesindeed therobotwill
follow the HC in G, traveling alongn — 1 edges(speming
2 pushesper edge)and pushirg all the boxes in the node
gadyetsin the correspading tamget positiors (1 push per
nock). If G is not Hamiltorian, thenin orderto visit all the
noces,theroba needgo travel twice alongatleastoneedge
of G, so the total numter of pusteswill be not lessthan
n-24n = 3n. Thus,theconstrueedBMP(1,0,0-F instance
canbesolvedwith 3n — 2 pushesff G is Hamiltonian.

3 Results

Fromthe precedig discussiorfollows
Lemmal BMP(1,0,0)-Fis NP-had.

We shallnow strengtherthis resultin severalaspectsFirst,
obseve that if the robot is only allowed to pull 1 box
(BMP(0, 1,0)-F), thesameedgegadyetcanbeusedo model
the direction on an edg — the only differenceis that the
directin of the edgeis now reversed. If, in addition the
initial and target positiors of the boxes in noce gadjets
areswapped the sameredwction works for BMP(0, 1, 0)-F.
Hence,

Coroallary 2 BMP(0, 1,0)-F is NP-had.

Whenthe roba is allowed to lift a box, the directiorality
of the corrida's (edges)is lost (the robot cantravel in both
directins). In fact,theedgegadyetmaynow besimplifiedto
justbea corridor with aboxin target position. Still, the cost
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of traveling through an edgeis 2. The BMP instancenow
modeds a planarundrectedcubic graph The HC problem
for planarundired¢ed 3-cannectedcubic graghs having no
facewith fewerthan5 edgeds NP-completd10]. Thus,our
redudion is valid for BMP(0, 0, 1)-F aswell:

Coradllary 3 BMP(0,0,1)-Fis NP-had.

Seconty, obsere thatif G is Hamiltonian the pathof the
roba in the propesedsolutionis nonself-intersectig. Thus,

Cordlary 4 BMP(1,0,0)-F-X, BMP(0,1,0)-F-X and
BMP(0, 0, 1)-F-X are NP-had.

Next, obsere that we could have assignechumtersto the
boxes andtarget locations. The boxes andthe target loca-
tionsin nodegadgets could have beenlabeledl throughn
andtheboxesin theedgegadgts(they arealread in target
positions)— n + 1 to 2n. The reduction above would not
chang andthus

Coradlary 5 #BMP(1,0, 0)-F,
#BMP(0,0, 1)-F are NP-had.

Giving the roba the power to push,pull or lift anarbitrary
numterof boxeswouldnotchangehereductio (essentially
theedgegadjetis justan“energy waster”).So,

Coradlary 6 BMP(k, p,l)-F is NP-had for any (k,p,l) #
(0,0,0).

Sinceall of the above obsevationswork independentlyof
eachother

Corollary 7 [#]BMP(k,p,1)-F[-X] is NP-had for any
(k,p,1) # (0,0,0).

Finally, we canreplacethe rigid walls of the coriidors by
walls of boxes of thickness2 and changethe gadjets as
shavn in Figure3. Theredwtion will still bein place. In-
deed evenif therobot hasenaughpower to breakthrougha
wall, it would not benefitfrom doing so, sinceit would still
needto spendtoo much of a workload befae gettingto a
nodegadget. Thus, we have themainresult:

Theorem 8 All variations of BMP are NP-had, i.e.
[#]BMP(k, p, )[-FI[-X] is NP-had for any (k,p,l) #
(0,0,0), includinginfinite valuesof &, p, .

#BMP(0,1,0)-F and

As mentioredabore, if G is Hamiltonian the correspond-
ing BMP(1,0,0-F instancecanbe solvedin 3n — 2 pustes,
whileif G is non-Hamiltonian thenumterof pushesneeded
to solve the instance,is at least3n. This shovs that (un-
lessP=NP)thereexist no Fully Polynonial Time Approxi-
mationSchemgFPTAS) for the prodem. Indeed,suppae,
thatthereexists analgorithm, which, for ary ¢ > 0, findsa
solution,requiring at most1 + ¢ timesthe optimumpushes;
andthatsuchanalgorithm runs in time, polynomialin 1/e.
Takee < 3;—_2 Then thealgorithm would output a solution
of costlessthan3n iff G is Hamiltonan. Sincethisagument
worksfor all versiors of the prablem,we have

Cordlary 9 Unless P=NP, ther exists no FPTAS for
[#]BMP(k, p, )[-FI[-X].
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Figure3: Node(left) andedge(right) gadgetswith all blocks
movable.

4 A Realistic Assumption

To prove hardressof BMP, we have constretedsomegad
getsconstréning the agents motion. Moreover, to avoid
leakag, the whole instancewas“closed” — onceinsidethe
warehaise, the agentis constraied to stay there forever,
never to beableto comeout andrepat a solutionto anNP-
hard problem! Considerilg sucha situationinhumaneand
unrealistic,we definethe OpenBoxMoverProblem(OBMP)
asBMP restrictedo theinstance$n whichtheagentcanes-
capeto infinity from the initial position. OBMP retainsall
thenotatian introducedin BMP: # , (k, p,1), -F, -X.

Lemmal0 OBMP is NP-had for all formulatiors for
which BMP is NP-had.

Proof. In the constructims usedfor proving harchessof
BMP we couldinitially putthe agentin the edge, adjacent
to the unboundel faceof the graph,andmale a holein the
wall closeto the agert's initial position. Having the abil-
ity to escapeo infinity doesnot chang the costof a feasi-
ble solution(sincewe only counttheworkload, not thetotal
travel of theagent).Thus,thereductian, whichworkedfor a
BMP formulation,alsoworks for the correspndingversian
of OBMP. O

Although openresshasno impacton optimality, it hasdras-
tic effed onfeasibility: every instanceof OBMP(k;, p, 1) with
I > 0 is feasible.Indeed,if theagentcanlift andcarrythe
boxes(l > 0), hecangoto afar point (“infinity” ), returnto
abox, carryit to infinity, returnto anotlerbox, carryit toin-
finity andsoon. Now, thathe hasall theboxes atinfinity, he
canstartbringing the boxesbackoneby oneto their target
positiors. If thereare N pixels in thefloor map,thereareno
more than N boxesin theinstance.So, the poirt atthedis-
tanceof 2V from theexit from thewarehowseis far enaugh
to bethe“infinity” poirt, to whichtheagentcancarryall the
boxesoneby one.Thus,ary instanceof OBMP(k, p, [) with
! > 0 is feasible.Moreover, it is solvablein at mostO (N ?)
movesandtherefae is in NP,

Theorem 11 [#]OBMP(k, p,l)[-F][-X] with I > 0 is NP-
compete
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5 Open Questions

1. A still-openquestionprgposedn [4] and[7], is to find
an “interesting tractableprodem. Despitesignificant
efforts, no suchprodem hasbeenfound in the “feasi-
bility” direction Maybe investigaing the optimization
would bring a well-solved specialcase,in which fea-
sibility is trivial, but optimizatia is still interestingto
consider

2. Our constretion seemsinapgicable for obtainirg a
hardressresultfor PushPusloptimizaion problem(a
variationin which a box, once pushed slidesto the
maximalextert, until it collideswith anothe box or a
wall (seeg[8])). Possiblya modification of the construc-
tion would leadto establishinghardressfor PushPush
optimizatian prodem or, mayke the optimizationprob-
lem for PushPuslifor its variatior) is in P. Thefeasibil-
ity problemfor PushPuslis NP-had dueto [5], but its
exactcomgexity is open

3. Itis essentiafor ourreductiosthattheinitial andtarget
positionscoincick for certainboxes. Whatif we restrict
BMP to the instancesvherethis is not true? What if
theinitial andtargetconfigurations,thowght of asrigid
bodies,may be pulled apartby a sequene of transla-
tions? The polynomial caseof line-separhility [15] is
aspecialcaseof thisgenerhone.
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