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Banana Spiders: A Study of Connectivity in 3D Combinatorial Rigidity

AndreaMantler *

Abstract

Finding a combindorial testfor rigidity in 3D is an open
prodem. We prove that vertex conrectiity canrot be used
to constret suchatestby descriting a classof mecharsms
thatincreasehe vertex connectvity of flexible grapls to 5.
Ourresultis tight, asminimally rigid graptsin 3D canbeat
most5-comected.

1 Introduction

In two dimersions,combnatorialrigidity is well undestood:
Lamans conditiononthenumberanddistributionof edgesis
bothnecessargndsuficientfor deternining if aframework
isrigid. In threedimensiois, however, findingatestfor com-
binatoial rigidity hasproved elusie. Little hasbeenpub-
lishedonthefailedattemptsin this paperwe shav thatver
tex comectvity doesnothelpusin ourgoal: 3-cannectvity
togethe with the 3D extensionto Lamans condtion is in-
sufficient,and4- and5-comectiity areneithersufficientnor
necessarya minimally rigid gragh cannotbe greaterthan5-
conrected.

There are mary mockls of rigidity. We examine first-
orderrigidity of barjoint framevorks [3, 5]. Mathemati-
cally, a framawork is definedas graphwith an embedihg
in ®¢. Onceembedled,the edgesof thegraphbecomefixed
lengthbarsconneted at flexible joints. Knowing whether
a framework is flexible or rigid, i.e. whethe or not there
exists an edgelength preserviig defamationthat changs
the distancedetweensomenonadjacen vertices, is useful
in mary applicatims, suchas designingbridges and other
structurs. If agraphG hasarigid embelding thenalmost
all embedihgs of G prodwesarigid framewvork. Thuswe
would like to assumea genericembedihg (see€[3, 5]), and
determire whetheror not a framework is rigid basedsolely
on the graphof vetticesandedges. (We call a gragh rigid
in B¢ if thereexists an embedling in R¢ that givesa rigid
frameawork.)

In 197Q Lamanpulisheda condtion thatcanbeusedto
testwhetheragragh is rigid in $2:

Condition 1 (Laman, [3,4]) Agraph G = (V, E) is rigid
for dimersion2 if andonlyif thereis a subsetE’ of F suc
that:
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Figure 1. The dowle barana,with animplied hinge edge
througha andb.

1. |E'| =2|V|-3,and

2. forall E" Cc E' whee|V(E")| > 2, wehave|E"| <
2|V (E")| - 3.

This condtion, knowvn as Lamans condtion, is both nec-
essaryandsufiicient. Notethatthegraph G' = (V, E') is
minimally rigid: removing ary edgefrom G’ gives a flexi-
ble graph Embedled geneically, a minimally rigid gragh
producesanisostaticframework [5].

Modifying Lamaris conditian for 3D, we get:

Condition 2 ([3]) Agraph G = (V, E) is rigid for dimen-
sion3if andonlyif theris a subsetE’ of E sud that:

1. |E'| = 3|V| -6, and

2. forall E" C E' whee |V(E")| > 3, wehave|E"| <
3|[V(E")| — 6.

We refer to Condition 2 as Lamans conditian, and call
graphs satisfyingthis condtion Lamangraphs Although
Lamariscondtion is necessaryt is nolongersuficient. The
dowble barana[2], shavn in Figurel, is the classicexam:
ple of a framavork that satisfiesLamans condtion, yet is
flexible.

Thedouwlebanamis thesmallesexanplewhereLamans
condtion is insufficient, but what are others? Lacking a
necessarand sufiicient extensionof Lamaris condtion to
3D, we would at leastlike to characterizehe casesvhere
Lamaris condition is not sufficient.

A naturalquestio is whethertrianglesare requred for
rigidity. Euler’s formua showvs thatplana graghsrequireat
leastonetriangleto berigid in 2D, andmustbefully trian-
gulatedto berigid in 3D. ThebipartitegraphkK s 3, however,
wasknown in the 19th centuryto be infinitesimallyrigid in
2D. Bolker and Roth [1] proved that trianglesare also not
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necessaryor rigidity for nonplanargraphsin 3D: bipatite
grapls K4 6 and K5 5 aregeneically rigid in 3D, asareall
bipartitegraphsk ,, ,, wherem,n > 5.

In this paperwe extendthe dowble banam counteexam-
ple to shav that vertex conrectiity togetherwith Lamans
condtion is neithera necessaryor a sufficient conditian for
rigidity in threedimensioss.

In the dowble bananathereis an implied hingethrough
verticesa andb. A hingeis anede, h;; € E, arond which
two or more rigid compmnentscanrotate.An impliedhinge,
hi; ¢ E, consistof a pair of verticesp; andv;, whosedis-
tanceis implied by two or moredisjoint (excef in v; andv;)
maximad rigid compaments. Theline through v; andv; acts
asthehingepin aroind which theattachedigid compments
rotate.

Thedoube baranais a 2-vertex-connetedgraph A graph
is k-vertex-cannected(or k-conrected if thereexist k ver
ticessuchthatremoving theseverticesdisconrectthegraph,
but no setof £ — 1 verticesdisconrectthegraph A natural,
but false,conjectue is thatgrapls with implied hingesareat
most2-comected We addmechanismgspides) to increase
theconnetivity of arny gragh with animplied hinge.

2 Upper Bound on Connectivity

To begin, we obsere that minimally rigid graghs cannad
have 6-vertex connectvity or higher.

Theorem 1 A minimal graph, G = (V, E), that satisfies
Lamans condtion is at mosts-conrected.

Proof. Vertex degreesin a k-conrectedgraph areat leastk,
andthus|E| = 3 3,.y deg(v) > k|V|/2. Since|E| =
3|V| -6, wegetk < (6|V|—12)/|V|, andthusG is atmost
5-comected. O

We areinterestedtherebre,in thepossibilityof 3-, 4-and
5-comectediexible grapts.

3 A 3-Connected Flexible Graph

Figure 2(a) from Whiteley's surwey [5] illustratesthe sim-
plestspiderthat corvertsthe 2-cannecteddoutle banaa to
a 3-conrectedflexible graph This spiderconsistsof a sin-
gle vertex, vg, conrectedby threeedges(legs) to the two
banams. Notice thatwe do not conrectthe legsto theim-
plied hinge vertices. As the banamsrotate,vertices v; and
v2 move closeror farther apart,causingvo to swing up or
down.

Lemma?2 ThegraphG = (V, E) in Figure 2(a) is a 3-
conrected flexible Lamangraph

Proof. The readr can check that the graph G is 3-
conrected,asit hasno cut setof sizetwo, andthatit satis-
fiesLamans condtion, asaddng onevertex andthreeedges

maintairs |E| < 3|V| — 6 for all induced subgaphs,with
equdity for thefull graph.

Adding the basicspideraddsonevertex andthreeedges,
maintairing theequatio |E| = 3|V| — 6 by addingthreeto
eachside.No subgaphviolatespart2 of Lamaris cordition,
thus,G cortinuesto satisfyLamans condtion.

To verify thegraph is still flexible, we look atthe spaceof
infinitesimalmotions,whichis alinearsubspaceAdding an
edgeaddsa singlelinearconstrant, redicing the dimensim
of the subspacdy 1. The spaceof motiors of a graph with
ahingeplusthe spiderbody hasdimensioratleast10: 3 for
theEuclideandegreesof freecdbm for the spiderbody verte,
6 for theEuclidea degreesof freedam for thegraph, andone
for the flexibility at the hinge. Adding the threespiderlegs
redwesthedimensiamto 7. Thus,thereis oneinternaldegree
of freecbm, andthe graph with the spideris flexible. |

We now move on to flexible graghs with higher conne-
tivity.

4 A 4-Connected Flexible Graph

Figure 2(b) shavs an example of a 4-comectedflexible
graph that satisfiesLamans condition In this gragh, we
have a spiderwith a triangdar body, andsix legs connet-
ing the spiderbody to the doulle banam. Notice that we
have the spiderlegs conrectingto northingevertices,three
legsperbanana,with thelegsfor eachbanasmterminatingin
two vertices.

Lemma3 Thegraph G = (V, E) in Figure 2(b) is a 4-
conrected flexible Lamangraph

Proof. Asin theproof of Lemma2, obsere G with the spi-
der, G4, removed: Gy = G -G, isthetwo-conrecteddoube
banaashavnin Figurel. Theset{a, b} C V istheonly cut
setof sizetwo of G, andthereareno cut setsof sizethree.

Adding thespiderbackto G, we seethattheset{a, b} C
V nolongerformsacutset,andwe mustremove anothe two
vetticesin orderto discomectG. Additionally, we canrot
discomectary commnentof G, from G without removing
atleastfour vertices.GraphdG is 4-comected.

Adding G adds threeverticesandnine edgesmaintain
ing theequatio |E| = 3|V| — 6 by addng nineto eachside.
No subgaphviolatespart2 of Lamans cordition, thus,G
contiruesto satisfyLamans condition.

The spaceof motions for G, plus a triangle (the spider
body) hasdimensionl3, sincea triangle has6 Euclidean
degreesof freedan. Adding the six legsrediwcesthedimen
sionto 7, andagainthe gragh with the spiderremairs flexi-
ble. d

5 A 5-Connected Flexible Graph
Figure2(c) illustratesan exanple of a 5-comectedflexible

graph thatsatisfied amans cordition. In this graph, the spi-
derbodyhasgrownto 6 vettices,andformsaminimally rigid
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Figure2: The doulle banam with spidersincreasinghe vertex connedivity to (a) 3-cannectvity, (b) 4-cannectvity, and(c)

5-comectiity. Spiderlegsaredravn asdashedines.

graph Notice thatwithin the body, eachvertex hasdegree
4. We addoneleg to eachspiderbodyvertex, increasiig the
degreeof eachbody vertex to 5. Threelegsconrectto each
banam of the doulle banam, and eachleg termiratesat a
distinct,nonhingevertex.

Lemma4 Thegraph G = (V, E) in Figure 2(c) is a 5-
conrected flexible Lamangraph

The proof of Lemma4 is basicallythe sameas that of
Lemma3.

6 Beyond Bananas

In this sectionwe give a methodto increasehe conrectiity
of agrafh, G = (V, E), without decreasig the flexibility,
or causingLamaris conditionto be violated To increase
the conrectiity, we addcopes of the 5-spicer describedn
Sectionb.

LetV = {vg,...,vn—1} betheverticesof G. We add
n spiderswith spideri having feetw;, .. .,v;45, wherethe
indicesare taken modulon. We will now prove that this
graph G5, consistingof G plusn spiders,is 5-cannected.
Thatis, thattherearenobadcutsets which arecutsetswith
fewer thanfive vertices.

Lemma5 Any graph G can be embeddd as a vertex-
induced subgaph of a 5-vertx-comectedgraph G5 =
(‘/57 E5)

Proof. Becausevery vertex hasdegreeatleastfive, no bad
cutsetcanisolatea singlevertex.

If thereis abadcut set, V.., cortaininga spiderbodyver
tex, v,, thenthereis a badcut setV; thatincludesvertices
only from V. CutsetV, splits Vs into V; andV,. We prove
thatV! = V. — {vs} + {vs} is alsoabadcutset,where v
is thefoot vertex adjacento v,. Thisresultsin acutsetwith
onefewer spiderbodyvertices.By inductian, we canfind a
V! thatcontainsvetticesonly from V.

Besidewy, theonly neighlowursof v, arefour spiderbody
vertices,sincewe alwaysconrectnew spidersto verticesof
G. Thespiderbody neightoursof v, canrot bein both V3
andVa, sincethentherewould be edges conrectingV; and
Va. Thus,w.l.o.g.,vys isin V7, thespiderbody neightwursof
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vs arein V, andV,, andmoving vy to V, andv, to V5 results
in avalid badcutset.

Finally, we prove thatabadcutsetV, C V doesnotexist:
we canremove up to four verticesandstill have acycle, C,
thatvisits every remairing vertex v; € V.

Note that a spiderconrectsverticesv;, ..., v;y5. Thus,
usingspideredgeswe canwalk forwardthroughthevertices
in V, taking “step sizes” of up to five. We construt C' by
taking the next smallestavailable stepforward which will
beto thenext v; ¢ V.. Thecutset,V/, canrot block this
path,since|V/| < 5. O

We now prove that addirg the 5-spicersto G doesnot
causd_amarnis conditionto beviolated,or decreas¢heflex-
ibility of G.

Lemma6 If agraph G = (V, E) satisfiesLamaris cond-
tion, G plusa 5-spicer G, satisfied amans condition

Proof. We examine all subgaphsof G U G, to verify that
part2 of Lamans condtion holds. We know that all sub-
graphs of G satisfy part 2, and can easily veiify that sub-
graphs of G, satisfypart2. Consideraninducedsubgaph
on S, a subsetof the spiderbody vertices,andV C V. If
|S| > 3 and|V’| > 3, weknow:

|E(S)]
[E(V)

3|S| -6,

<
S 3|V| _67

andhence,
[E(S)| +|E(V)| < 3(|S|+ |[V]) — 12.

Sincethereareno morethansix spiderlegs conrectingthe
vetticesin S andV, the subgaph satisfiespart 2. Cases
where|S| < 3 or |[V] < 3 alsosatisfypart2 of Lamans
condtion: we eitheraddonevertex andup to two edgespor
two verticesandup to five edges; eitherway, the inequality
of part2 holds. O

Lemma7 Addinga 5-spide, G, to a graph G cannd de-
creasethe spaceof infinitesimalmotiors.

Proof. We sketchtheproof, usingthetermindogy of White-
ley’'s suney [5] andGraveretal. [3].
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Givenagenericembedthg of G, aninfinitesimalmotion
of G is anassignmenof “velocities”to the embedeéd ver
ticesof G suchthatR[v!]T = 0, whereR is therigidity ma-
trix determired by the coordnatesof thevertices.Eachrow
in R representsanedgein G, andeachcolunn repesentsa
coordnateof avertex in G.

LetG' = GUGs, andlettherigidity matricesof G, G', the
spiderbody, andthespideregsbe R, R', Ry, and[Rr ¢ Rrs),
respectidly. ThenR' canbedeconposednto:

R 0
R = 0 Ry
Rry Rpp

We know R[v{]T = 0, andthuswe needonly find a solution

to:
| |1 = S |

where[uv,,] arethevelocitiesof the spiderbodyvertices.We
know the rank of the above rigidity matrix is lessthanor
equalto 18 sincethereareonly 18 rows: 12 for the spider
bodyedgesand6 for thelegs. Thus,therewill beatleastone
valid assignmenfior the6 x 3 coodinatesof [v;,]. Therefae,
for evely valid infinitesimalmotionof G, thereexistsavalid
infinitesimalmotionof G;. O

Theorem 8 Any graph G, can be embeddd as a vertex-
induced subgiph of a 5-vetex-connectedyraph G 5, sud
that the spaceof infinitesimalmotionsis the sameor larger,
andGjy satisfied.amans condition if G does.

Proof. By Lemmab, we canuseb5-spidersto increasethe
vertex conrectiity of G to five. By Lemna 7, addng a 5-
spiderdoes not decreasehe interral degreesof freecbm of
G, and G5 retainsthe flexibility of G. By Lemma 6, G5
satisfied amaris conditionif G does. O

7 Conclusions

As we have shavn in Sections3, 4 and5, we canincrease
thevertex conrectvity of thedowle bananaraphusingspi-
ders.In Section6, we prove thatary flexible graph satisfying
Lamans condtion is aninduceed subgaphof a 5-cannected,
flexible graphsatisfyingLamans cordition. Thus,we can-
not usecomectity to createa necessargndsuficienttest
for combnatorialrigidity in 3D.

8 Open Problems

Problem 1 Are the graphsin Figures 2(a) through(c) the
smallest3-, 4-, and5-conrectedcounteexanplesto the suf-
ficiencyof Lamaris condtion?

Problem 2 Find a necessaryand suficient extension of
Lamans condtion to 3D.
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