On the number of line tangents to four triangles in three-dimensional space *

Hervé Brönnimann ${ }^{\dagger}$

Olivier Devillers ${ }^{\ddagger}$

Sylvain Lazard ${ }^{\S}$
Frank Sottile ${ }^{〔}$

Abstract

We establish upper and lower bounds on the number of connected components of lines tangent to four triangles in \mathbb{R}^{3}. We show that four triangles in \mathbb{R}^{3} may admit at least 88 tangent lines, and at most 216 isolated tangent lines, or an infinity (this may happen if the lines supporting the sides of the triangles are not in general position). In the latter case, the tangent lines may form up to 216 connected components, at most 54 of which can be infinite. The bounds are likely to be too large, but we can strengthen them with additional hypotheses: for instance, if no four lines, each supporting an edge of a different triangle, lie on a common ruled quadric (possibly degenerate to a plane), then the number of tangents is always finite and at most 162; if the four triangles are disjoint, then this number is at most 210 ; and if both conditions are true, then the number of tangents is at most 156 (the lower bound 88 still applies).

1 Introduction

In this paper, we are interested in lines tangents to four triangles. Our interest in lines tangent to triangles, and generally to polytopes in \mathbb{R}^{3}, is motivated by visibility problems. In computer graphics and robotics, scenes are often represented as unions of not necessarily disjoint polygonal or polyhedral objects. The objects that can be seen in a particular direction from a moving viewpoint may change when the line of sight becomes tangent to one or more objects in the scene. Since the line of sight then becomes tangent to a subset of the edges of the polygons and polyhedra representing the scene, questions about lines tangent to four polygons arise very naturally in this context.

[^0]Our results. By a triangle in \mathbb{R}^{3}, we understand the convex hull of three distinct points in \mathbb{R}^{3}. We are not discussing degenerate triangles which reduce to a segment or to a point. Given four triangles t_{1}, t_{2}, t_{3}, and t_{4} in \mathbb{R}^{3}, denote by $n\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$ the number of lines tangent to all four triangles. ${ }^{1}$ Note that this number can be infinite if, for example, four sides of the triangles are supported by four lines that lie on a hyperbolic paraboloid. Let us denote by T_{4} the set of all quadruplets of triangles $\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$ with the property that for any of the $3^{4}=81$ quadruplets of lines $\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right)$ such that ℓ_{i} supports an edge of t_{i}, the four lines do not belong to a quadric (a paraboloid hyperbolic or a hyperboloid of one sheet), and no two of these lines are coplanar. In particular, for every $\left(t_{1}, t_{2}, t_{3}, t_{4}\right) \in T_{4}$, there are at most two lines tangent to the lines supporting any quadruplet of edges, hence $n\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$ is finite and at most 162 .

In this paper, we are primarily interested in the number

$$
n_{4}^{\text {triangles }}=\max _{\left(t_{1}, t_{2}, t_{3}, t_{4}\right) \in T_{4}} n\left(t_{1}, t_{2}, t_{3}, t_{4}\right)
$$

Our main results are two-fold. First, we show that
Theorem 1 We have $n_{4}^{\text {triangles }} \geqslant 88$. More precisely, there is a configuration offour disjoint triangles in \mathbb{R}^{3} which admit finitely many, but at least 88, distinct tangent lines.

Next, we improve the upper bound on n_{4} slightly, in the disjoint case.

Theorem 2 We have $n_{4}^{\text {triangles }} \leqslant 162$. More precisely, if four triangles are in T_{4}, they admit at most 162 distinct tangent lines. This number is at most 156 if the triangles are disjoint.

Unfortunately, we cannot claim that if the number of tangent lines is finite, then it is at most 162 , because the number may be finite although the four triangles do not belong to T_{4}. When the four triangles are not in T_{4}, the number of lines tangent to all four triangles can be infinite, and even when it is finite it could be more than 162. In this case, we may group these tangents by connected components: two line tangents are in the same component if one may move continuously

[^1]between the two lines while staying tangent to the four triangles. Let $n^{\prime}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$ denote the number of connected components of tangent lines to four triangle, and let
$$
n_{4}^{\prime \text { triangles }}=\max _{\text {any }\left(t_{1}, t_{2}, t_{3}, t_{4}\right)} n^{\prime}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)
$$

Each quadruplet of edges may induce up to four components of tangent lines [2], bringing the upper bound to 324 . We can give a better bound on the number n_{4}^{\prime} of connected components of lines tangent to four triangles in any position. We only state the following theorem (the proof will appear in the complete version).
Theorem 3 We have $n_{4}^{\prime \text { triangles }} \leqslant 216$ (and 210 if the triangles are disjoint). Moreover, the number of infinite components is bounded above by 54 .

2 Proof of Theorem 1

For the lower bound, we construct four disjoint triangles in such a way that they admit at least 88 tangents. At the heart of our construction is a perturbation scheme from a configuration of lines l_{1}, l_{2}, l_{3} and l_{4} which have exactly two transversal lines x and y. We will perturb each l_{i} into coplanar lines, l_{i}^{\prime} and $l_{i}^{\prime \prime}$, in order to multiply x and y into two sets of tangent lines. By choosing the perturbation carefully, we argue that those tangent lines will be tangent to the triangles t_{i} defined by the three lines l_{i}, l_{i}^{\prime}, and $l_{i}^{\prime \prime}$.

One way to obtain such a configuration is by taking l_{1}, l_{2}, l_{3} on a hyperbolic paraboloid (see Figure 1). This paraboloid admits two families of ruling lines, and we take l_{1}, l_{2}, l_{3} in one of the two families. Next we choose a vertical plane π_{4} intersecting the paraboloid in a conic \mathcal{C} (actually, a parabola; see Figure 1) and a line l_{4} in π_{4} that cuts \mathcal{C} in two points, x_{4} and y_{4}. The lines that belong to the second family of lines ruling the paraboloid passing through these two points are denoted x and y, and and intersect l_{1}, \ldots, l_{4}. In order to avoid any kind of degenerate configurations, we may take all four lines algebraically independent.
For our construction, a bit of notation helps. Given three skew lines a, b, c, we denote by $\mathcal{L}(a, b, c)$ the set of their line transversals, and by $\mathcal{Q}(a, b, c)$ the quadric ruled by these lines. In particular we will denote by \mathcal{Q}_{j} the quadric passing through the lines l_{i} for all $i \in\{1,2,3,4\}$ distinct from j. We denote by π_{i} a (not necessarily vertical) plane passing through $l_{i}(i=1,2,3,4)$. Note that each plane π_{i} intersects the corresponding quadric \mathcal{Q}_{i} in a non-degenerate conic \mathcal{C}_{i}, and in this plane the line l_{i} intersects \mathcal{C}_{i} in two points, $x_{i}=x \cap \pi_{i}$ and $y_{i}=y \cap \pi_{i}$. We can always pick π_{i} such that \mathcal{C}_{i} is a parabola, or in case of a hyperbola, such that l_{i} intersects the same branch twice. This will be important in the construction below and is referred to as the local convexity of \mathcal{C}_{i} in the neighborhood of x and y.

Construction of \mathbf{t}_{4}. The situation in π_{4} is depicted in Figure 2(left). The first step of our construction is to pick

Figure 1: The initial configuration l_{1}, l_{2}, l_{3} and l_{4} with the hyperbolic paraboloid \mathcal{Q}_{4}.
a point on l_{4} outside the conic \mathcal{C}_{4} (on the side of x_{4}) and rotate l_{4} into a line l_{4}^{\prime} by a very small angle ε_{4}. This introduces two points x_{4}^{\prime} and y_{4}^{\prime}. Then we pick a line $l_{4}^{\prime \prime}$ which intersects \mathcal{C}_{4} in two points in the very small arc from y_{4} to y_{4}^{\prime}. Note that this line is almost tangent to \mathcal{C}_{4}. The lines l_{4}, l_{4}^{\prime} and $l_{4}^{\prime \prime}$ thus intersects \mathcal{C}_{4} into six points, which are as close as we want to x_{4} and y_{4}. The local convexity of \mathcal{C}_{4} around y ensures that those points actually lie on the triangle t_{4} bounded by l_{4}, l_{4}^{\prime} and $l_{4}^{\prime \prime} .^{2}$ These six points corresponds to six lines that are transversal to l_{1}, l_{2}, l_{3} and tangent to the triangle t_{4}, and which are as close as we want to x and y. (See Figure 2(right).)

Figure 2: (left) In π_{4}, the line l_{4} cuts \mathcal{C}_{4} in two points, x_{4} and y_{4}. (right) From 2 intersections to 6.

Construction of $\mathbf{t}_{\mathbf{3}}$. The second step takes place in π_{3}. The quadric $\mathcal{Q}\left(l_{1}, l_{2}, l_{4}^{\prime}\right)$ cuts π_{3} in a conic C_{3}^{\prime} very close to \mathcal{C}_{3}, while $\mathcal{Q}\left(l_{1}, l_{2}, l_{4}^{\prime \prime}\right)$ cuts π_{3} in a conic $C_{3}^{\prime \prime}$ (not necessarily close to \mathcal{C}_{3}). Note that \mathcal{C}_{3}^{\prime} intersects l_{3} in two points x_{3}^{\prime} and y_{3}^{\prime} very close to x_{3} and y_{3}, while $\mathcal{C}_{3}^{\prime \prime}$ intersects l_{3} in two points between y_{3} and y_{3}^{\prime}. Thus either (i) $C_{3}^{\prime \prime}$ is almost tangent to l_{3}, or (i) it is hyperbola whose two branches are almost parallel in the neighborhood of y_{3}. (See Figure 3(left)).

In any case, we pick a point on l_{3} outside the segment $\left(x_{3}, y_{3}\right)$ (this time on the side of $\left.y_{3}\right)$ and rotate l_{3} into a line l_{3}^{\prime} by a small angle ε_{3}. Thus l_{3}^{\prime} intersects \mathcal{C}_{3} in two points close to x_{3} and y_{3} and \mathcal{C}_{3}^{\prime} in two points close to x_{3}^{\prime} and y_{3}^{\prime}.

[^2]

Figure 3: (top) In π_{3}, the line l_{3} cuts $\mathcal{C}_{3}, \mathcal{C}_{3}^{\prime}$ and $\mathcal{C}_{3}^{\prime \prime}$ in six points, close to x_{3} and y_{3}. (bottom) From 6 intersections to $6+6+4=16$: (left) near x_{3} (right) near y_{3}.

By choosing ε_{3} small enough (ε_{4} being fixed) we can also guarantee that l_{3}^{\prime} intersects $\mathcal{C}_{3}^{\prime \prime}$ in two points close to y_{3} and y_{3}^{\prime}. Finally, we choose ε_{3} big enough with respect to the curvature of \mathcal{C}_{3} and \mathcal{C}_{3}^{\prime} so that ${ }^{3}$ the portions of \mathcal{C}_{3} and \mathcal{C}_{3}^{\prime} close to x_{3} and x_{3}^{\prime} in the angular sector between l_{3} and l_{3}^{\prime} both admit a line $l_{3}^{\prime \prime}$ that intersects both conics in two points each within that sector. Note that $l_{3}^{\prime \prime}$ is almost tangent to both curves \mathcal{C}_{3} and \mathcal{C}_{3}^{\prime}.

Note the apparent contradiction: ε_{3} must be big enough w.r.t. curvature of and distance between \mathcal{C}_{3} and \mathcal{C}_{3}^{\prime} to allow for the existence of $l_{3}^{\prime \prime}$, yet small enough for l_{3}^{\prime} to intersect $\mathcal{C}_{3}^{\prime \prime}$. We resolve it by arguing that choosing the direction of rotation of l_{3}^{\prime} carefully: In case (i), we rotate l_{3}^{\prime} towards the direction of the concavity of $\mathcal{C}_{3}^{\prime \prime}$. Thus the two intersections with $\mathcal{C}_{3}^{\prime \prime}$ still exist for quite large values of ε_{3}. Note that case (ii) poses no problem. This essentially removes the contradiction.

Again, the local convexity of both \mathcal{C}_{3} and \mathcal{C}_{3}^{\prime} is used to guarantee that all these points lie on the triangle t_{3} bounded in π_{3} by l_{3}, l_{3}^{\prime} and $l_{3}^{\prime \prime}$. Together, l_{1}, l_{2}, t_{3} and t_{4} have $6+6+4=16$ tangent lines. The situation is depicted in Figure 3(top).

Construction of $\mathbf{t}_{\mathbf{2}}$. In π_{2}, in addition to \mathcal{C}_{2}, we now have three other conics very close to \mathcal{C}_{2} (intersection with π_{2} of ${ }^{4}$ $\mathcal{Q}\left(l_{1}, l_{3}, l_{4}^{\prime}\right), \mathcal{Q}\left(l_{1}, l_{3}^{\prime}, l_{4}\right)$, and $\left.\mathcal{Q}\left(l_{1}, l_{3}^{\prime}, l_{4}^{\prime}\right)\right)$. There are also a second group of two conics resulting from the intersection with π_{2} of $\mathcal{Q}\left(l_{1},\left\{l_{3}, l_{3}^{\prime}\right\}, l_{4}^{\prime \prime}\right)$, which may be almost tangent to l_{2} near y_{2} as in case (i) above, or hyperbolas whose two branches intersect l_{2} near y_{2} as in case (ii) above. Similarly, there is a third group of two conics resulting from the intersection with π_{2} of $\mathcal{Q}\left(l_{1}, l_{3}^{\prime \prime},\left\{l_{4}, l_{4}^{\prime}\right\}\right)$, which intersect l_{2} near x_{2} (either case (i) or (ii)). (See Figure 4(left).)

[^3]As before, we pick a point on l_{2} outside the segment $\left(x_{2}, y_{2}\right)$ (say near y_{2}) and rotate l_{2} into a line l_{2}^{\prime} by a small angle ε_{2}. Unfortunately, if the second and third groups are both in case (i) and their tangencies are on opposite sides of l_{2}, we cannot choose the direction of rotation as for l_{3} above, because we may lose the intersections with the group whose tangency is on the other side of the direction of the rotation. It turns out that we can place the four lines l_{1}, l_{2}, l_{3}, and l_{4} such that the second and third groups are both tangent to l_{2} on the same side. Thus we can choose to rotate l_{2}^{\prime} towards that direction (without constraints on ε_{2}) and intersect the first group of conics in eight points, and the second and third groups in another eight points, four near y_{2} and four near x_{2}, introducing sixteen new transversals.

As for $l_{2}^{\prime \prime}$, we choose it almost tangent to the first group of four conics so that intersects all four twice near x_{2} in the angular sector between l_{2} and l_{2}^{\prime}. Again, the apparent contradiction on the order of magnitude of ε_{2} w.r.t. the curvature of these conics near x_{2} and the need for ε_{2} to be small is resolved by the direction of rotation which guarantees the existence of the intersections between l_{2}^{\prime} and the second group of conics even for rather large values of ε_{2}. Thus $l_{2}^{\prime \prime}$ introduces an additional eight new transversals.

Let the triangle t_{2} be bounded in π_{2} by l_{2}, l_{2}^{\prime} and $l_{2}^{\prime \prime}$. Again, the local convexity of all the conics guarantees that all the new transversals to l_{2}, l_{2}^{\prime} and $l_{2}^{\prime \prime}$ are actually tangent to the triangle t_{3} bounded in π_{3} by l_{3}, l_{3}^{\prime} and $l_{3}^{\prime \prime}$. Together, l_{1}, t_{2}, t_{3} and t_{4} have $16+12+8=36$ tangent lines. (See Figure 4(right).)

Figure 4: (left) In π_{2}, the line l_{2} cuts three groups of conics, those close to \mathcal{C}_{2}, those tangent to l_{2} at x_{2}, and those tangent at y_{2}. (right) From 16 intersections to $16+16+8=40$.

Construction of $\mathbf{t}_{\mathbf{1}}$. In π_{1}, the situation has multiplied. Close to \mathcal{C}_{1} are eight conics (including \mathcal{C}_{1}) intersection of π_{1} with $\mathcal{Q}\left(\left\{l_{2}, l_{2}^{\prime}\right\},\left\{l_{3}, l_{3}^{\prime}\right\},\left\{l_{4}, l_{4}^{\prime}\right\}\right)$. There are also four conics (second group) intersecting l_{1} near y_{1}, resulting from the quadrics $\mathcal{Q}\left(\left\{l_{2}, l_{2}^{\prime}\right\},\left\{l_{3}, l_{3}^{\prime}\right\}, l_{4}, l_{4}^{\prime \prime}\right)$. And two groups (third and fourth) of four conics each, intersecting l_{1} near x_{1}, which result from $\mathcal{Q}\left(l_{2}^{\prime \prime},,\left\{l_{3}, l_{3}^{\prime}\right\},\left\{l_{4}, l_{4}^{\prime}\right\}\right)$ and $\mathcal{Q}\left(\left\{l_{2}, l_{2}^{\prime}\right\}, l_{3}^{\prime \prime},\left\{l_{4}, l_{4}^{\prime}\right\}\right)$. (See Figure 5(left).)

We play the same game, and rotate l_{1} into l_{1}^{\prime} by an angle ε_{1}, introducing sixteen new transversals with the first group of conics. We cannot ignore the case where the second, third and fourth groups all fall in case (i), but in this case at least two groups share the same side of tangency, so we can choose the direction of rotation of l_{1}^{\prime} to introduce at least
another sixteen new transversals, without restrictions on ε_{1}. Finally, we can choose $l_{1}^{\prime \prime}$ to close the triangle t_{1} in such a way that its side cuts the eight conics of the first group between l_{1} and l_{1}^{\prime} into sixteen new points, all on the boundary of t_{1} by again using the local convexity of all conics near x_{1} and y_{1}. The situation is depicted in Figure 5(right).

Hence the four triangles thus constructed have a total of $40+16+16+16=88$ lines tangent, finishing the proof of Theorem 1 .

Figure 5: In π_{1}, the line l_{1} cuts eight conics (first group), and three groups of four conics each, bringing the number of intersections from 36 to $40+16+16+16=88$.

Remark. In what precedes, we have only accounted for the tangents that pass through only one of the sides supported by $l_{1}^{\prime \prime}, l_{2}^{\prime \prime}, l_{3}^{\prime \prime}$, and $l_{4}^{\prime \prime}$. Because of the short length of each of these segments, it is hard to say whether there are common tangents to the triangles through more than one of these sides. If the construction could be more controlled, perhaps the lower bound could be increased.

3 Proof of Theorem 2

It is known that four segments have at most four transversals (or an infinity); moreover, if the four supporting lines do not belong to a common ruled surface, then there can be at most two transversals[2]. Thus if the triangles are in T_{4}, the four triangles have at most $3^{4}=81$ quadruplets of edges formed by picking an edge from each triangle. Each quadruplet can have at most two transversals, and hence we very easily obtain $n_{4}^{\text {triangles }} \leqslant 81 \times 2=162$.

We now indicate how to improve on this bound when the triangles are disjoint. We can show that there are at most 78 quadruplets to consider in the disjoint case, thus bounding the number of common tangents by 156. The proof follows that on the upper bound for the number of tangents to four polytopes[1], but limits the number of configurations for disjoint triangles in \mathbb{R}^{3}. For clarity, we divide the proof into two lemmas. For lack of space, however, we do not include the proofs of Lemma4, and only sketch the proof of Lemma 5.
Lemma 4 Fix an edge e of a triangle, say t_{1}. The number of quadruplets of common tangents which contain e is always at most 27 , at most 26 if the line supporting e stabs only one of the triangles t_{2}, t_{3} or t_{4}, and at most 25 if it stabs none. Those bounds are tight.

Lemma 5 Given four disjoint triangles, the number of quadruplets that lead to a common tangent is bounded by 78.

Proof. (Sketch) The proof proceeds by constructing a bipartite graph between twelve nodes representing each edge e_{i}^{j} of every triangle $t_{j}(i=1,2,3$ and $j=1,2,3,4)$ and four nodes representing each triangle $t_{k}(k \neq j)$. An arc between e_{i}^{j} and t_{k} indicates that the line supporting e_{i}^{j} stabs t_{k}. (We use arc to describe the edges of the graph, in order to avoid confusion between edges of the graph and edges of the triangles.) The proof rests on the claim that this graph can have at most 18 edges (out of a possible 48). We do not prove the claim for lack of space, but its proof rests on a careful examination of the relative position of two disjoint triangles, and using Lemma 4.

Remark. In the disjoint case, it is possible to pick four triangles whose bipartite graph has exactly 18 edges, showing that the argument above cannot be improved further without additional ideas. It is conceivable, however, that finding further restrictions on the bipartite graph may lead to lower the upper bound.

Acknowledgments

This research was initiated at the Second McGill-INRIA Workshop on Computational Geometry in Computer Graphics, February 714, 2003, co-organized by H. Everett, S. Lazard, and S. Whitesides, and held at the Bellairs Research Institute of McGill University. We would like to thank the other participants of the workshop for useful discussions.

References

[1] H. Brönnimann, O. Devillers, V. Dujmovic, H. Everett, M. Glisse, X. Goaoc, S. Lazard, H.-S. Na, and S. Whitesides. On the number of lines tangent to four convex polyhedra. Proc. Fourteenth Canad. Conf. Comput. Geom., pp. 113-117, 2002.
[2] H. Brönnimann, H. Everett, F. Sottile, S. Lazard, and S. Whitesides. Transversals to line segments in \mathbb{R}^{3}. Proc. Fifteenth Canad. Conf. Comput. Geom., 2003.
[3] F. Durand, G. Drettakis, and C. Puech. The 3D visibility complex. ACM Trans. Graphics 21(2):176-206, 2002.
[4] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, Germany, 1987.
[5] J. E. Goodman, R. Pollack, and R. Wenger. Geometric transversal theory. In New Trends in Discrete and Computational Geometry, (J. Pach, ed.), Springer Verlag, Heidelberg, pp. 163-198, 1993.
[6] H. Pottman and J. Wallner. Computational Line Geometry. Springer-Verlag, Berlin, 2001.
[7] R. Wenger. Progress in geometric transversal theory. In Advances in Discrete and Computational Geometry, (B. Chazelle, J. E. Goodman, and R. Pollack, eds.), Amer. Math. Soc., Providence, pp. 375-393, 1998.

[^0]: *Research of H. Brönnimann supported by NSF CAREER Grant CCR0133599. Research of F. Sottile supported by NSF grant DMS-0134860. Research of O. Devillers supported by IST Program of the EU as a Sharedcost RTD (FET Open) Project under Contract No IST-2000-26473 (ECG Effective Computational Geometry for Curves and Surfaces).
 ${ }^{\dagger}$ CIS Dept, Polytechnic University, Six Metrotech, Brooklyn, NY 11201, USA, hbr@poly.edu
 \ddagger INRIA, BP 93, 06902 Sophia-Antipolis, France, olivier.devillers@sophia.inria.fr
 ${ }^{\S}$ LORIA (INRIA, U. Nancy 2), 54506 Vandœuvre-lès-Nancy Cedex, France. sylvain.lazard@loria.fr
 ${ }^{\top}$ Dept. of Mathematics, Texas A\&M University, College Station, TX 77843, USA. sottile@math.tamu.edu

[^1]: ${ }^{1}$ A line tangent to four triangles does not properly cross the interior of these triangles, and so it corresponds to an unoccluded line of sight. If it is contained in the plane of any of these triangles, it may intersect the interior but it is not considered a proper crossing. Indeed, the line is still tangent to the triangle considered as a degenerate three-dimensional polytope.

[^2]: ${ }^{2}$ Local convexity is crucial here: If \mathcal{C}_{4} had been concave in a neighborhood of y, as would have happened if \mathcal{C}_{4} had been a hyperbola and l_{4} had cut its two branches, then $l_{4}^{\prime \prime}$ would have actually put y_{4} and y_{4}^{\prime} outside the triangle t_{4}.

[^3]: ${ }^{3}$ This is the sore point: ε_{3} must be big enough w.r.t. curvature of and distance between \mathcal{C}_{3} and \mathcal{C}_{3}^{\prime} to allow for $l_{3}^{\prime \prime}$, yet small enough for l_{3}^{\prime} to intersect $\mathcal{C}_{3}^{\prime \prime}$. Until we do the concrete construction, the doubt remains...
 ${ }^{4}$ We will extend $\mathcal{Q}()$ with a set-theoretic notation to avoid tedious repetitions. For instance, $\mathcal{Q}\left(l_{1},\left\{l_{3}, l_{3}^{\prime}\right\},\left\{l_{4}, l_{4}^{\prime}\right\}\right)$ refers to the union of the four possible combinations.

