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We discussa meshlessapproachto the problem of recon-
structinga surfacein ��� from a finite sampling. This ap-
proach is adirectadaptationof akernelmethod for clustering
pointsin Euclideanspace.The reconstructedsurfaceis the
preimage of the boundaryof the smallestenclosingball of
thesamplepoints mappedinto somefeaturespace.We have
implemented this approachandreport on our experimental
findings that indicatethat it might be suitablenot only for
surfacereconstruction but alsofor feature detectionandre-
constructingmanifolds of higher co-dimension.
Keywords. Curve andsurfacereconstruction,kernel meth-
ods,support vector clustering
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Surfacereconstructionis theproblemof computing acontin-
uousmodel of a surfaceembeddedin �!� only from a finite
setof samplepoints. Themodelshouldshareasmany topo-
logical andgeometric propertieswith theoriginal surfaceas
possible.Thepredominant approachtowards surfacerecon-
structionin computationalgeometry is via surfacemeshing
from theDelaunay triangulationof thesamplepoints [1, 2].
Thesemeshescanbeproven to sharemany propertieswith
the original surface. In computer graphics recently mesh-
less approachesto the surfacereconstruction problembe-
camepopular [5]. In theseapproachesthesamplepointsetis
usedto computea function "$#%�&�(')� whosezeroset,i.e.,"+*-,�.0/1 , is usedasa surfacemodel. Sometimesthefunction" is chosento bea linearcombinationof asetof radialbasis
functions[5]. This is alsotheapproachwewantto takehere.

Our approachis the direct adaptationof a technique de-
veloped by Scḧolkopf et al. [9] for novelty detectionand
by Ben-Huret al. [3] who extended this approachto clus-
ter points in Euclidean space.The approachis to mapthe
smallestenclosingball problemnon-linearly into somefea-
turespace.Theminiball problem,i.e., theproblemto com-
putethecenterandradiusthesmallestball thatcontains all
samplepoints,haslong beenstudiedin computationalge-
ometry[6]. It is well known that it is an instanceof a con-
vex quadratic problem (QP). In the QP formulation of the
miniball problemthesamplepoints only appearin dotprod-
ucts. This makesthe QP formulation of the miniball prob-2
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lem amenable to thesocalledkernel trick. Thekerneltrick
is to replaceall dotproductsin input spaceby evaluationsof
a positive semidefinitekernelat the samplepoints. A pos-
itive semidefinitekernel is a positive semidefinite function6 #7� �98 � � ')� . Applying thekerneltrick correspondsto
implicitly mapping thesamplepoints to somefeaturespace.
Theminiball problemis thensolvedin thefeaturespace.The
surfacemodelwe want to studyis thesetof pointsin input
space,i.e., �:� , that aremappedto boundarysphereof the
miniball in featurespace.If our kernel would bejust theor-
dinary dot product in �;� thenthesurfacemodel would just
bethesurfaceof theminiball in �;� . Otherkernels give sur-
facesthatadaptmuchbetterto the “geometry” of thepoint
set,seeFigure1 for a two-dimensionalexample.

Figure1: On the left: Miniball of a setof pointsin �=< . On
theright: Thepreimage of a miniball in featurespace.
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In this sectionwe introducetheminiball problem in feature
space.Ourexpositionfollows [3]. Thefeature mapping

N #7� � 'POJQSRUT' N .0R�1
mapsourinput space��� to somefeaturespaceO . In generalO hasa dimensionmuchlarger thanthreeor is eveninfinite
dimensional. In O we compute the radius VXW andthe cen-
ter Y of the minimumenclosing ball of the mapped sample
points, i.e.,we solve thefollowing optimization problem,

min V <
s.t. Z N .[R�\]1_^`Y-Z <ba V <dc samplepoints Re\

It turnsout that the solutionsof this optimization problem
tendto beunstablein ourapplication- thatis in computinga
surfacemodel from theinput points.Thecomputedsurfaces
eitherconsistof many componentsor thesurfacetendsto be
“blobby”, seeFigure3 for examples. This phenomenonis
quitewell known in machinelearningandin generalreferred
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to asovf erfitting. Oneway to dealwith overfitting is to relax
the constraints, i.e., we no longer demandthat all sample
pointshave to be contained in the ball but we allow some
outliers. Sincewe do not want too many outlierswe have
to penalizethemin theobjective function. That leadsto the
following optimizationproblem,

min V <hgjiLk \ml \
s.t. Z N .[R�\]1_^`Y-Z < a V < g l \

l \on /
With the variables l \pn / we weaken the constraints and
constraint violationsarepenalizedby theterm i;q \ l \ in the
objective function. By adjustingthevalueof i onecancon-
trol theviolation of theconstraints.TheKuhn-Tucker con-
ditionsfor thisoptimization problemguaranteetheexistence
of r�\%Qts�\ n / suchthat

.uV <�g l \&^pZ N .0R�\]1_^`Y-Z < 1�r�\wv /
l \Gs�\wv /

Thatis, theimageof a samplepoint Ryx lies on theboundary
of the optimal ball if l xzv{/ and /}|~r�x�| i . Pointsfor
which r�x:v�/ lie insidethesphere. For l x���/ theimageof
thepoint R�x lies outsidetheoptimalball.

It turnsout for several reasons that it is muchmorecon-
venient to work with thedualof this optimization problem.
Thedualproblem is obtainedfrom theLagrangianfunction�

of theprimal optimization problem.TheLagrangianfunc-
tion is theobjective functionminusa linearcombinationof
theconstraintswith non-negativecoefficients,

� v V < g�i k \�l \ ^ k \ r \ .0V < ^ l \ ^�Z N .[R \ 1_^�Y-Z < 1
^ k \ l \Gs�\%Q�r�\%Qts�\ n /

TheLagrangemultiplier theoremstatesthatanoptimum of
theprimal problem correspondsto a saddlepoint of theLa-
grangian function. Sincea saddlepoint is a critical point of�

thegradientof
�

hasto vanishatsuchapoint. Thatis, the
partial derivativesof

�
with respectto V�QtY and l \ have to

vanish.Fromthis weget

k \ r�\�v��7Q Y�v k \ r�\ N .0R�\�1�Q r�\!v i ^�s�\%�
Theseequations canbe usedto eliminatethe variables V ,Y and l \ from theLagrangian function which thenonly de-
pends on the r \ ,

��� v k \ r \ N .[R \ 1 < ^ k x[� \ r x r \ N .[R x 1S� N .0R \ 1
A saddlepoint of

�
correspondsto a local maximumof

� �
.

Thus we obtainthefollowing optimization problem,

max k \ r \ N .[R \ 1 < ^ k x[� \ r x r \ N .[R x 1 � N .0R \ 1
s.t. / a r�\ a�i

Solving this optimizationproblem we getthecenterY of the
miniball as YEv q \ r�\ N .[R�\�1 . For every point R��p��� the
squared distanceVz<%.[R�1 of its imagein feature spacefrom
thecenterY of thesphereis

V < .0R�1�v�Z N .[R�1�^�Y-Z <
Thesamplepoints R x whoseimagelie on thesurfaceof the
optimal ball arecalledsupport vectors. TheradiusV W of the
optimal ball satisfiesthefollowing

V <W v��+V < .[R x 1&��R x a support vector ��
Observe that in thedualoptimization problem we do not

needto accessthemapped samplepoints
N .[R x 1 but only to

thevalueof thedot products
N .[R_x�1�� N .[R�\�1 . This canbeex-

ploitedbyapplying thesocalledkerneltrick andsubstituting
dot productsin input spacewith kernel functionevaluations
in featurespace,i.e.,N .[R�1�� N .0��1�v��}.[R+QS��1��
Making this substitutionrelieves us from computing dot
productsin O andmakesthemapping

N
implicit. Thedefi-

nition of theradiusof theoptimalball aswell asthedistance
function from thecenterremainthesame,only thesquared
distancefunctionnow reads asfollows,

V < .[R�1dv Z N .0R�1_^`Y-Z < (1)

v �}.[RLQtR�1_^E� k \ ��.0RLQSR�\�1
g k x0� \ r x r \ ��.0R x QSR \ 1��

For the rest of this paper we will work with the Gaussian
Kernel N .0R�1:� N .[��1�v���.0RLQt��1�v�  *-¡7¢¤£%*�¥�¢¤¦
Thiskernelis popular in machine learning, graphics andap-
proximationtheory. Notethatthefunction

��.��§QSR x 1;#7� � '���QSR`T')��.[R+QSR x 1:v�  *�¡¢¤£�*�£©¨�¢¤¦
is a radialbasisfunction. Thus V < .[R�1 is just a linearcombi-
nationof radialbasisfunctionscenteredat thesupport vec-
tors.

ª «yF �%� � ����	S������� � �
Weusethedistancefunction to thecenterof theoptimalball
to definea surfacemodel.Thesurface ¬ is thesetof points
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Figure2: On theleft: Threenon-touching ringswerereconstructedfrom 6000 samplepoints.In themiddle: A knottedtorusis
reconstructedfrom tenthousandsamplepoints.All samplepointsaresupport vectors. Ontheright: TheStanford bunny model
is reconstructedfrom 33,947 samplepoints.

R�®�_� whoseimage
N .[R�1 lie ontheboundaryof theoptimal

ball in feature space,namely

¬¯v��=R���� � ��V�.[R�1hv�V!Wb�
where V�.0R�1 is the distancefunction corresponding to (1).
In otherwords, the surface ¬ is the preimage V�*-,�.0V�W]1 of
thedistanceVbW of thesupport vectors from thecenterof the
optimalball. SinceV is asmoothfunction wegetfromSards
theorem [4] its critical valueshave Lebesgue measurezero.
Thisimpliesthatfor all valuesof V W besidesasetof measure
zero ¬`v�V�*-,�.0V W 1 is a two-dimensionalmanifold.

Thefunction V dependsontwo parameters° and i . If the
samplepointsarenot noisy thenthey shouldall lie on the
surface¬ . Thusall samplepointsshouldbesupport vectors.
This is achievedfor fairly largevaluesof ° . For smallvalues
of ° therearefew supports vectors, thesurface¬ tendsto be
blobby andit tendsto have thetopology of a sphere.On the
otherhandfor largevaluesof ° thesurfacegetsdisconnected
- evenif theoriginal surfacewasconnected. For very large
valuesof ° every samplepoint lies on its own component
of the surface ¬ . Both phenomena(blobbinessanddiscon-
nectedness)canbe controlled with the secondparameter i
which is calledregularizationparameterin machinelearn-
ing. Theeffectof theregularizationparametercanbeseenin
Figure3. Thechallenge is to find values for theparameters° and i whichwork well onalmostall setsof samplepoints.

We experimentedwith this approachtowards surfacere-
construction. In Figure2 we show someresults.For render-
ing an implicit surfacewe approximatedit with a meshthe
weobtainedusingavariant of themarching cubesalgorithm
provided by Lewiner et al. [7]. The examples of the three
rings andthe knot demonstratethat this approachcanhan-
dle complex topologies like several connected components
or non-trivial isotopy type.

Furthermore,varying theparameters° and i seemsto re-
veal topological propertiesof the surfaceslike boundaries.
This is demonstratedin Figure4 in aone-dimensionalexam-
plewith azero-dimensionalboundaryandatwo-dimensional
example with a one-dimensional boundary.

Figure3: The reconstructedsurfacedepends on theparam-
eters ° and i . Left: °jv±��/�Q i v²� resultsin a blobbysur-
facewith about 75% of the samplepointslying on the sur-
face.Middle: All pointslie on thedisconnectedsurfacefor°}v±³%/HQ i v{� . Right: Allowing outliers i v±/�� /%/%´��µ the
surfacestaysconnectedfor high ° .

Figure 4: On the right: The two outliers are exactly the
endpoints of the non-closedcurve in �!< . On the left: The
outliers areexactly the points on the two one-dimensional
boundariesof thetube.

We observedthatsamplepoints nearsharpfeaturesof the
input modelstendto receivehighervalues r:x . Thisisdemon-
stratedin Figure5 wherethesamplepointsalongtheedges
of the the cubeget larger r+x valuesthan the points on its
facets.Thusit seemsto bepossibleto detectnot only topo-
logicalbut alsogeometric featuresfrom thesamples.

Sincewe have only oneequationthis approachseemsin-
herently restrictedto allow only the reconstruction of two
dimensional surfaces- the equation eliminatesone degree
of freedom. In our experimentswe observed that whenthe
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Figure5: Ontheright: Randomly sampledcube.Ontheleft:
Reconstructing a curve in ��� . Note though the reconstruc-
tion is a surfaceit looksone-dimensional ona largescale.

methodis appliedtosamplesfromacurvethentheadditional
dimension in thereconstructiongetsfurled. SeeFigure5 for
anexample. This observation indicates that it could bepos-
sibleto getalsomeaningful reconstructionsof curves.
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Sofar we couldnotfind a shape-independentstrategy to de-
terminethe parameters ° and i . Different shapesshowed
differentsensitivity to variationsof theparameters,seeFig-
ure6.

Figure 6: The Three-Holes topology is properly recon-
structedwith only 10% of the samplepoints beingsupport
vectors while in thecaseof theknot even85%of thepoints
arenotenough.

Solving the dual optimization problem requires a
quadraticprogramto besolvedwith thenumber of variables
equalto thenumberof samplepoints.This makesexactso-
lutions impractical. We computedan approximatesolution
by adaptating the sequentialminimal optimization (SMO)
method[8]. Theaccuracy of thesolutionhowever hasanon-
neglectableimpact on thesurface.

To render themodelswecomputedtriangularmesheswith
a variant of themarching cubesalgorithm [7]. This method
needsmany evaluationsof the function (1) which is costly
sinceit is a combination of asmany radial basisfunctions
astherearesupport vectors. For fastermeshingmethods to
efficiently evaluate large sumsof radial basisfunctions as
discussedin [5] shouldbeadapted.

At themoment our approachis certainlynot competitive
with thestateof theart in threedimensionalsurfacerecon-
struction.But it seemsto beapromisingmethodto compute

modelsof manifolds with higher co-dimensionfrom a finite
sampling. Note,that thecomplexity of solvingthedual op-
timization problemdepends only on the number of sample
points but noton thedimension.
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