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Decompos ition of planar motions into refle xions and rotations with
distance constraints

Stepharfoldes

Abstract

Threevariatiors aregivenonatheorenof RomerioandBur-

ckhadt statingthatunder the constraim of a minimum turn-

ing radiws the nunber of movementsneededo re-position

anautomdile-like vehicle is 3. In amoreabstracgeomet-
ric framework, vehiclepositionsarerepresetedby tuplesof

pointsonwhichatransfamationgroupG actsregularly, and
questios of factoizationuncder certainconstrants areposed
in G.

1 Introduction and overview

Everyrigid planarmotion (isometryof the Euclidean plane)
canbe decompsedinto a prodict of at most3 reflectiors,
andthe bourd 3 is bestpossible Thebasictheoryof isome-
triesalsotells usthatevety directrigid motion (orientatian-
presering isometry canbe decompsedinto a product of
at most2 rotations,andhereagan thebourd 2 is obviously
bestpossible- nontrivial translationsieed?2 rotations.

Thesedeconpositionsarenot unique: in factary product
of 2 or 3 reflectionscan be represeted in infinitely mary
waysasa praductof 2 or 3 reflectionsandif ary particular
reflectionis forbidden, a representatiorso constraired will
still exist. This canbeviewedasa consegenceof the clas-
sical threereflectionstheoemsfor concurent and parallel
mirrors. (For backgourd seee.g. Ryan[4].) Evenstrongr,
ary finite or evencourtably infinite setof reflectiors canbe
forbidden,andrepresentationsy 2 or 3 reflectiors will con-
tinueto exist. Broade restrictionson whatreflectiors may
be usedin representinga motion may lead either to non-
existenceof representationsr to therequrementof ahigher
numtler of reflectiors (4 or more)neecekdto represena mo-
tion.

The problem of deconposing direct isometriesof the
planeinto a minimum numbe of constraied rotations was
studiedoy RomerioandBurckhadt [3]. Theconstrintsthey
considercorrespondo the motion of autonobile-like vehi-
clesthat move in discretephaseseachphaseof movement
consistingof the settingof the steeringwheelin a fixed po-
sition after which the vehicletravels alongthe circular tra-
jectory (or straightline) determired by the fixed position
of the wheel. Moreover, the wheel cannd be turnedtoo
sharply Vehicle positiors can be modelledas couplesof
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poirts (A, B) at unit distance. The group of directisome-
triesactsregularly onthe setof suchcouges. The contint
on vehcle movementduringa phasdas mocklled by requir-

ing thetransfamationto bearotationwhosecenteris onthe
line dravn throudh A and pergendicularto AB, morewer
the centerof rotation is requred to be at a distancemore
thana prescribedminimum from A. The numker of such
restrictedmotions requiredto map one vehicle positionto
anotler wasshavn to be 3 in [3], evenif translationsalorg

AB areallowed. We shaw thattwo differert relaxatiors of
theconstraim consideedby RomeriocandBurckhadtleadto

decanpositionsnto atmost2 rotations.For arbitraryisome-
tries,director indired, we alsogive atheoremof deconpo-
sition into a product of reflections,subjectto the corstraint
that the distanceof the reflectionmirror be at leasta pre-
scribedminimum from thepositionof theobjectto bemoved
- but now theobjectis nolongerthough of asanautonobile-
like vehicleandits positionis modelledby atriple of points
(A, B, C) mutually at unit distancefrom eachother The
group of all planeisometriesactsreguarly on the setof all

suchtriples, andthis group is gereratedby reflections,ary
isometrybeingthe productof at most3 reflections.Promsi-
tion 3belaw assertshatunde themirror distanceconstrai,

the numter of reflectionsneededo mapary poirt triple to
anotler giventriple is 4.

2 Formal definitions and decomposition theorems

The following framework is not the mostgeneralpossible,
but it is geneal enowgh for the resultsof RomerioandBur-
ckhadt andthedecompsitiontheoemsof this pape.

Let G beagroy actingreguarly onasetV andlet H be
a nonemptysetof generatos of G' closedundertaking of
inverses(Thisimpliesin particularthatevery membe of G
canbefactorizednto a product of somepositive numkber of
memtersof H.) Consideing alsothe actionof G on itself
by conjugation,anaturalactionof G on GzV is givenby

flg,v) = (fgf ™", fv)

A relation R betweenG andV (i.e. subseof GzV) that
is closedunderthis actionis calleda constaint. Members
of G arecalledtransformatios, thoseof V' positiors, andif
acouple(g,v) is in R thenwe saythatthe transfomation
g is allowedby the positionv. If thereis a positive integer
m suchthatfor evety v in V every g in G canbe written
asa prodwct of at mostm (not necessarilydistinct) mem-
bersof H, g = hyy, ... h1, with the property that for each
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i = 1,...,m the transfomation h; is allowed by position
hi—1...h1(v), thenwe saythatm is the minimumnumter
of factors in constained decompsitionsof membes of G
(into productsof membes of H). Clearly suchm may fail
to exist, andit dependsnot only on the choiceof H but on
the specificatiorof theconstrain R aswell.

Two classe®f extreme situationsarewhenR is emgy or
thefull relationGzV. Trivially, if R is emptythenthereis
nominimum nunberof factors.ThecaseRzV is nondrivial,
eventhoughherethe specificatiorof V' andof thegroupac-
tion is irrelevant. This casecanbe calledthe uncmnstrained
case For exanple, with G thegroupof planeisometriesand
H thesetof reflectiors, we have m = 3. With G thegroup
of directisometrieof theplaneandH thesetof all rotatiors,
we havem = 2. Theresultsof RomerioandBurckhadt [3]
cannow berestatedasfollows:

Letpositionsbedefiredascouples(A, B) of pointsin the
planeat unit distane, d(A, B) = 1, andlet G bethegroup
of directisometries.

(i) LetH bethe setof rotations. Let M > 0. Leteadh
position(A4, B) allow everyrotationwhosecenteris on
theline perpendialar to AB drawnthrouch A andat
adistanceat leastM from A. Thenm = 3.

(i) Let H bethesetof rotationsplustranslations.Leteat
position(A, B) allow the samerotationsasin (i) and
alsoall translatilmsalong theline AB. Thenm = 3.

Note that the uncorstrainedversiors of (i) and (i:) give
m = 2 andm = 1, respectiely. We give threefurther con-
straineddecompsition theoems. In the first two, G is the
groy of direct planeisometries, the positionsare couges
(A, B) of pointsat distanced(A4, B) = 1, H is the setof
rotatiors, andthe constrints aretwo different partialrelax-
ationsof the corstraintcorsideredby Romerioand Burck-
hardtasdescribedn (i) abore.

Proposition 1 Let positionsbe definedas coupes of points
(A, B) at distanced(A,B) = 1, and let ead position
(A, B) allow every rotation whosecenteris on the line
through A perpendcular to AB. Thenthe minimumnum-
ber of factors in corstraineddecompsitionsof directplane
isometriegnto rotationsis m = 2.

Sketchedprod. Obserefirst thatgivenaposition(A4, B)
eachcircle with centerX tangentto AB at A is cortained
in one or the otherhalf-plare detemined by the line AB,
accordng to whetherthe triple (A, B, X) is clockwiseor
courter-clockwise.

Suppae a direct isometry g and a position (A4, B) are
given If g fixes A theng is a rotation allowed by (A, B).
Otherwisedraw sufficiently small disjoint circles @ and K
tangen to AB at A andto gAgB at gA, respectiely, say
with respectie centersX andY’, andsuchthatbothcircles
arecontairedin the samehalf-plane determine by theline
AB.
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If oneof thetriples (4, B, X) and(gA, ¢B,Y) is clock
wise andthe otheris counte-clockwise,theninflate @ with
centerof dilatation A until it becomesa circle Q' tanget
to K atapointT, theinteriors of the circlesbeirg still dis-
joint. Thetransformation g is thendecompsedinto a rota-
tion abaut the centerof @)’ bringng A to T, followed by a
rotation abou thecenterY of K bringng T to g A.

If both(A4, B, X) and(gA, ¢B,Y’) areclockwiseor both
arecounterclockwise thenfurtherinflate @ until it becanes
tangat to K andincludesK, anddefinethe two rotations
similarly. A

Proposition 2 Let positiors be defired as coupes of points
(A, B) oftheplane let M > 0, andlet ead position(A4, B)
allow everyrotationwhosecenteris at a distanceat leastM
from A. Thentheminimumnumbe of factorsin constained
decanpositionsof direct plane isometriesinto rotationsis
m = 2.

Sketchedproof Obsere first thatgiven positions(A, B)
and(A’, B") anda point X, thereareexadly two rotations
h around X suchthattheline hAhB is parallelto A’ B' and
justoneof theserotatiors is suchthatthe directedsegments
hAhB and A’ B' have oppaitedirectians.

Supmse a direct isometry g and a position (A4, B) are
given. By appr@riate choiceof a rotation » with center
X far enoudn from A, we canrotate (A, B) to a position
(hA, hB) suchthat hA is far enowgh from gA andthe di-
rectedsegmentsh Ah B andgAgB areparallelwith opposite
directims. Thelet f bethehalf-tum aboutthe middle point
of thesgmen gAhA. Wehaveg = fh. A

In the following propasition the group G is the group of
all planeisometries,direct and indirect. This group acts
regularly on the set of triples of points (A, B,C) form-
ing an equilater& triande of unit side length, d(A, B) =
d(A,B) = d(B,C) = 1. As geneatingsetH we take all
reflectiors. Recallthatthe uncorstrainedminimum numker
of factosism = 3.

Proposition 3 Let positiors be defired as triples of points
(A,B,C) with d(A,B) = d(A,C) = d(B,C) = 1. Let
M > 0. Letead position(A4, B, C) allow everyreflectio
whosemirror is at distanceat least M from A. Thenthe
minimumnumberof factors in constained decompsitions
of planeisometriednto reflectionss m = 4.

Sketchedproof Suppae an isometryg and a position
(A, B, C) aregiven We indicatethe constructim of there-
flectionfactorsunder the assumptiorthat A B is not parallel
to gAgB. In theparallelcasespecialargumentsof particuar
simplicity canbeapplied Underthe statedassumptionfirst
wemap(4, B,C) to (A', B',C") sothat

(i) A'isfarenoudn fromtheline gAgB ,

(i) theorthagonalprgectionof A’ ontheline gAgB is also
farenowghfromgA,
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(i) andthedirectedsegmentA’B’ is parallelwith, andop-
positein directionto, thedirectedsegmen g AgB.

This we do with a singlereflectionin a mirror far enowgh
from A if g is adirectisometry otherwisewe doit with two
successie reflectionsin mirrors suficiently distant. Then
we reflectin a mirror parallelto g AgB andat half distance
betweerthelinesgAgB andA’B’, followedby anappraori-
atereflectionin amirror perpewlicularto theline gA4gB, to
bring A’ to gA. Theoptimality of m = 4 is shovn by letting
g bearotationby 7 /2. A

We notethatthe proof of Propositionl involvesaninflat-
ing processwhich canbeviewedasatime-parametrizedon-
tinuouws procesghatis applieduntil a certaingeonetric con-
figuration is achievedatthelimit. In [3] theresultsareestab-
lishedbothusinglinearalgebraandby a rulerand-conpass
argument. In factthe latter canalsobe replacedby a con-
tinuity argument,giving a somavha differentinsight. Such
replacement of discreteruler-and-commsscorstructionsby
contintty amumentshave shown their usefulngsin other
areasof polygongeametry[1, 2], andthis appoachmaybe
appliedto further instancesof the geneal constrainedde-
compsitionprodem.
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