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J.A. PérezRuy-D́ıaz
�

M. SafarSideq

���������
	���
Findingoptimalpathsin non-homogeneousterrainsis aclass
of problemthatpresentsitself in many situations.Oneof the
best-known versions is theso-calledWeightedRegionProb-
lem (WRP) [2],[3],[4],[5], basedon a model of spacewith
regionsof constantweight. Herethis versionis generalized
usinglinear functions definedto coincidewith the weights
assignedat the verticesof a patchwork of triangles,anda
methodis proposedof approximatingtheoptimalpathby a
polygonalcurve in ��������� time. Experimentsshow that,de-
spite its apparent complexity, this kind of problemcan be
solvedby methods similar to thoseusedfor theWRPandat
a computationalcostof ��������� in practicefor modelswith
morethan4000regions.
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Let usconsidera two-dimensionalspacedomainconsisting
of a triangular grid where,at vertex (�) , thereis a known
weight( *�+,).-0/ ). Within eachtriangularregion. 132 , alinear
interpolating weight function *54 2 ��687:9$� canbedefinedand
thispiecewise-linearfunctioncanbeusedoverthedomainas
anapproximationto thesampledweightfunction (Figure1).

An optimalpathbetweentwo pointsof thisspacewill bea
sequence of, in principle, tangentcatenaryarcsandstraight
segments. In regionswith aweightgradient,thesolutionwill
containcatenaryarcsand, occasionally, straightsegments
along the boundary. In regions of constantweight (three
verticeswith equalweight), the respective segment will be
straight. The path may crossall regions more than once.
However, given theexceptionalconditionsunder whichmul-
tiple crossings canoccur, it canbeassumedthatthenumber
of suchcrossingswill belimited in afairly regular triangular
patchwork. Then, if thepatchwork has � regions, thenum-
berof segmentsof theoptimalpathcanbeconsideredto be�����8� 1.

Themodel canbeextendedto caseswith discontinuities,
takingarbitrary linearfunctionsfor theweightoneachpatch.
This makesit possibleto consider the WRP asa particular;
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1Mitchell andPapadimitrou [4] calculated the numberof segmentsof
theoptimalpathin WRPto be <>=@?BA�C , basedon a paradoxical example. In
the context of our work, the grid obeys the needto interpolate the weight
function andwe understandthat Delaunay triangulation meetsthe above-
mentioned conditions of regularity, except in very exceptional casesthat
couldbeavoided by introducing someadditional samplingpoints

Figure1: Optimalpathwith weightdefinedby a piecewise-
linearfunction.

casewith a consequential lossof continuity of the slopeat
breakpoints
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Theprincipal difficulty in identifying a completesolutionin
thismodel (asfor theWRP),is to determinethesequenceof
patchesthrough which thesolutionpasses.But to reachthis
point, thewholedomain needsto beexplored,running tests
at a heavy computationalcost. TheWRPhastheadvantage
of the optimal pathbeinga polygonal curve with segments
wholly contained in the regions (provided they areconvex)
andof theeaseof evaluation of thecost.In thepresent case,
calculating the costof crossinga particular patchinvolves
first determining the catenary parameters of eachsegment.
Mattersare further complicated by possiblepatchre-entry
afterexit.

Under thesecircumstances,the questionis whetherthe
catenary arcscanbe substitutedby straightsegments, that
is, whetheranapproximatepolygonalsolutionwith vertices
on the boundariesis acceptable. If so, this new problem is
similar to theWRPandcanbedealtwith usingsimilar tech-
niques.

Let us focuson a catenaryarc of the optimal pathcon-
tainedin a triangular region whoseendpoints P ] andP̂ lie

72



CCCG 2004, Montreal, Quebec, August 9–11, 2004

on_ its boundary. This arc will be the optimal pathbetween
thetwo points, thatis, thepathminimizing thefunctional

`badcGe *3�f6,�hgi��7j9k�lg��:�
mRg (1)

when *3��6,7j9$� is a linear function. It is well known that (1)
hasanotherpossiblesolution(Goldschmidt’s solution), con-
sistingof two straightsegments leadingfrom eachpoint to
the line *3��6,7j9$� a / anda segmentof zerocostalongthis
line [1],[6]. Consequently, thearcwill eitherbebetterthan
Goldschmidt’s solutionor theresultof anoptimizationwith
constraints where one of the boundariesobstructed Gold-
schmidt’s solution.This meansthatit will betangent to one
of theendpoints of thecatenary.

Let us supposenow the following strategy to replacethe
catenaryarcby straightsegments: a) if thecatenaryis better
thanaGoldschmidt solution,replaceit by thesegment P ] P̂ ,
b) if not,replaceit by two segments P] Q andP̂ Q tangent to
its endpoints (Figure 2).

Figure2: Strategiesto approximatecatenaryarcs.

In bothcases,a ratio canbe calculatedbetweenthepath
costsin orderto find out therelativeerror. Thechoiceof co-
ordinateaxesis immaterial, asit is thechoiceof scale,given
thelinearity of theweightfunction. Henceit is sufficient to
analyzetheratio functionsfor asimpleproblem with weight
function *3��6,7j9$� a 9 , start point locatedat (0,1) andend
pointat any nV�f687:9�� , with 6poq/ and 9Lrts .

Figure 3: Restricteddomain for theratioanalysis

In casea) (Figure3) a ratio function 1��fu#7j6!� canbe cal-
culatedfor any point n of a catenaryarc of parametera
startingat (0,1) andendingat the point wherethe catenary
andGoldschmidt solutions have equalcost (Goldschmidt’s
limit). This function hasa maximum 1 a sXv /IwIw (Figure4).

Figure4: Ratiobetweenthecostsof pathsin casea).

Proceeding as above, we can obtain a ratio 1 � �luT7:6#� in
caseb) for any point P of a catenary arc of parameter u
ending at theenvelop of the family of catenariesstartingat
(0,1) (limit of catenaries).Themaximumof the function is1 � a sIv /�wx (Figure5).

Figure5: Ratiobetweenthecostof pathsin caseb).

It follows thatwe canconstruct a polygonalwith vertices
ontheregion boundariesanda cost` 4 r `zy �js|{~},�
where}~r 0.058 andC

y
is therealcost.

Furthermore,thesizeof thegrid will influence thevalue
of } , sincewith smallertriangular regionswewill havesmall
catenaries,within Goldschmidt’s limit, thatwill bebetterap-
proximatedby meansof straightsegments. Consequently,
it is reasonable to reformulatetheoriginal problem asfind-
ing theoptimalpolygonalpathacrossatriangular patchwork
with verticeslying on theregion boundariesandwith a cost
expressedas

73



16th Canadian Conference on Computational Geometry, 2004

` 4 a������ ^ * �%�>�
where * � is the average of the weightsat the ends of the
segment andL � is the segment length,as resultsfrom (1)
following thispath.

� ��U ZG�R�
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The chosenmethod, like approachesadopted by otherau-
thors,is basedon a discretization of the edges of the trian-
gularpatches andintroducesa certainnumber of new points
(Steinerpoints)on theseedges.With this discretization, we
haveagraphG in whicheacharcis assignedaweightthatis
theaverageof theendpoint weights(Figure6). Theproblem
cannow be solved usingDijkstra’s algorithmor any of its
variants. Without lossof generality, the original startpoint
(s) andendpoint (e) canbe assumedto be vertices of the
original patchwork and,therefore,nodesof thegraph. If this
werenot the case,it would suffice to subdivide the region
containing thestartandendpointsinto another three.

Figure6: SubgraphconnectingverticesandSteinerpointsin
a patch.

Thealgorithm beginsby identifying a first approximation
to theoptimalpaththat is accurateenough to determined a
sequence of crossedpatches andboundaries. To this end,
Steinerpoints areintroducedandthe graphG is built. The
optimalpath �����lgI7:�%� in G is an approximation of the opti-
malpolygonalpath�V�lgI7:�%� in P, wheretheverticesmatchthe
graphnodes. A straightforwardway to introducetheSteiner
pointsis to divide the boundariesat regular intervals into a
given number of segments. This methodcanbe improved
by settinga quantity � L suchthateachof thesubdivisions
comesascloseaspossibleto, without exceeding, this quan-
tity or, alternatively by settingthemaximum difference� w
betweenweightsof neighboringpoints.Theaccuracy of the
chosensystemwill depend on the maximum valuesof the
two parameters.

When the approximation �����lgI7:�%� to the optimal path is
found, thealgorithm entersa refinementphasein which the
problemis constrainedto thesub-domainof Pformedby the

crossedpatches. At this stage,considerationis givento sub-
dividing theremaining patchesandincreasingthenumberof
Steinerpointsonthem,with theeffectof bothimproving the
positionof boundarycrossingpointsandsmoothing therep-
resentation of catenary arcs.Theseproceduresareappliedit-
eratively with theaim of reducing total pathcost.This does
not necessarilymeanthat the solutionobtainedis closerto
theoptimum. Thiswill dependontheaccuracy of thesearch
processin thefirst phase,thatis, thenumberof Steinerpoints
used.If thesequenceof patchescrossedis determined cor-
rectly in the first phase,thenthe secondphasedoesindeed
produceabetter(andsmoother) solution.

Clearly, thegreaterthenumberof Steinerpoints,themore
precisetheapproximation will be,while executiontime will
increaseat the same. Therefore, a ratio betweenthe num-
berof Steinerpoints, theerrorestimate,andthe time taken
to solve the problem shouldbe established.The reasoning
usedby Lanthier[3] to justify his approximatepathsearch
algorithm in weightedregions is usedhereto highlight the
similarities and differencesbetweenthis approachand the
WRP2.

Proposition 1 A segment of the optimal path gI2 within a
patch 1�2 is approximated by another gI�2 , the ends of which
are neighboring points of the subdivision, such that`�� g �2B� r ` �hg 2 ��{��%*�4 2 � �
where * 4 2 is the maximum value of the weight function in1�2 .
Lemma 2 If �Y�lgI7���� is an optimal path in P, there exists an
approximate path �.�X�hgI7:�%� ,in G such that` ��� � �>r ` �f�8�8{��%��*>���:�X� �
where

` ������� is the cost of the approximate path,
` �f�8� the

cost of the optimal path, m is the number of segments in each,
and * ���:� is the maximum value of the weight function in the
domain.

Theorem 3 There is an approximation �k�\�lgI7���� to the opti-
mal path ���hgI7:�%� of straight segments such that` �l� � �zr ` �l�8�8{��* ���j� �|�
where � � is the length of the longest boundary of any patch.
Moreover, the computational cost of this approximation is��������� , where n is the number of triangular patches.

� �#HRETQR�
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To validateourproposal,aprototypewasdevelopedto check
theeffect of thealgorithm parameters(thenumberof Steiner
points andthe level of refinement of the solution)on accu-
racy andcomputationtime. As, to thebestof ourknowledge,

2We omit the details of the demonstrations dueto spaceconstraintson
this version
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there� areno similar approaches,the resultswerecompared
with thoseof a traditional rastermethod usinga fine rectan-
gulargrid.

All the testswerebasedon a mapof a geographical ter-
rain over which a variablenumberof pointswerechosento
measure,on a scaleof 1 to 10, thecostof travel asaffected
by relief, vegetationandotherfactors.A Delaunay triangu-
lation wassetup over thesamplepoints,andterrainmodels
weregeneratedwith 120, 480, 1080, 1920, 3000 and4320
triangular patches,assigningthe calculatedweightsto the
vertices.Problems weresetup for eachterrainmodel with
start andendpointssituatedat the outer regions to assure
that the terrainwascrossedin the path. Thepathswerefi-
nally checkedfor validity (orthogonality) againstcontoursof
thecostsurfacegeneratedonrastermodels.Theconclusions
presentedbelow aretakenfrom themeanvaluesof costand
execution time measuredon eachmodel with a rangeof pa-
rametervalues.

�����"$��	R�%Wp�RNF��O�Q E�	��POR�%¡
Theevolution of thecalculated

pathcostasa function of thenumber of Steinerpoints was
asymptotic, reachinga limit value at 20 points and more.
With respectto the refinement of the trajectoryby succes-
sive subdivision of thepatches crossedin theinitial solution
theimprovementin theapproximatecostwaslessthanmight
beexpected. Theindicationsarethat,apart from exceptional
cases,the utility of the refinement phaseis to improve the
form of the pathratherthanto bring about an effective re-
duction in cost, and a single level of refinement therefore
appears to besufficient.

¢ �TJ£ET"R��	���&'� � ��&¤JVQI�%¡
Computation times increased

quadraticallywith thenumber of Steinerpoints (andsowith
the total number of nodes in the graph) in all models. The
increasewasslightly more marked in the refinement phase
where the effect of proliferating Steinerpoints combined
with the subdivision of patches. A moredetailedanalysis,
with themodelof 4320 patches,revealedthat thecomputa-
tion time in thefirst phasewas ����� � � , whereasit wascloser
to ���f� �i¥f¦i§ ���8�:� with threelevelsof subdivision. Thiscanbe
explainedby the fact that thenumberof nodes in thegraph
grows quickly at three subdivisions and is nearly ����� � � ,
whereasthenumberof edgesdoesnot reach���f�z��� .
¢ �TJ£E$	X�
& � Z~�T"$�5JL�! $Q�U,¨©& �PO �PORQ«ª¬>®¯JY�! GQ�U°¡

While
experimentationproceededwith the proposedmodel, tests
were also carriedout on modelswith patchesof constant
weight (averaged over eachpatch). The resultsrevealedin
somecasesnotablediscrepanciesin thetrajectory of theop-
timal pathsandtheir costsIn general, theexperimentsindi-
catethat the discrepanciesare larger in models with sharp
changesof weightandfewer patches.This is easyto under-
standin termsof inadequateinterpolation,sincebothmeth-
odsmustgiveconvergent resultsasthenumber of patchesin-
creases.This tendency supports thehypothesisthat,in some

realapplications,theproposedmodelrequiresfewerpatches
thantheWRP, andthatthiscompensatesfor its greatercom-
plexity.

± ¢ � � �XUK"R�P&M� � �
In this paper we have proposeda generalization of the
WeightedRegion Problem. This new point of view, it is
hoped, will contribute to solving somereal practicalprob-
lemsand,at thesametime, openup alternative lines of re-
searchin thisfield.¬�QN\Q��\Q � �%QI�
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