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Maximizing the Area of an Axially-Symmetric
Polygon Inscribed by a Simple Polygon*

Gill Barequet

Abstract

In this papemwe resohethefollowing problem Givenasim-
ple polygon P, whatis the maximum-areapolygon thatis
axially symmetic andis contairedby P? We proposeanal-
gorithm for answeringhis questionanalyzethealgorithm’s
compgexity, anddescrile ourimplementationof it (for con-
vex polygons). The algorithm is basedon building andin-
vestigatilg a planarmap,eachcell of which correspadsto
adifferentconfigurationof theinscribedpolygon. We prove
thatthecompgexity of themapis O(n*), wheren is thecom-
plexity of P. For a corvex polygon the compleity, in the
worstcasejs O(n?) .

1 Introduction

Containmat prablemshave alwaysheldanimportar rolein
discreteandcomputationalgeometry In geneal, a contain-
mentprodem meanghatwe aregivensomeobjectandthen
areasledto compute a contaning or containedbjectsatis-
fying someadditinal criteria(see,e.g.,[2, 1]), asit relates
to thefirst object. In the currentwork we seeka maximum-
areapolygon containecby a givensimple (or convex) poly-
gon,with therestrictionthattheinscribedpolygonis axially
symmetric. The main motivation for this prodem is indus-
trial, originatingfrom theneedto calculateshapeshatareto
be cutfrom metalandcloth sheets.

Definition 1 Given a simplepolyga P in the plare, an-
other polygon Cp, is called symmetriccontainedin P if
(1) Cpe C P; and(2) Cp, is symmetricabou someline
(axis).

Amongall symmetic polygonscontairedin P with some
axis of symméry /£, the onewith the maximum areais the
intersectiorof P andits reflectionwith respecto ¢, deroted
asP,. Theaxially-symmetric polygon cortainedin asimple
(norcorvex) polygon may consistof severd disconmected
compmnents. In the caseof a convex polygon, the axially-
symmetriccontainedpolygon is alwaysconrectedandcon-
vex. Thebowndaryof P [ P, consistsof pottions of edges
of P andof P,. Suchapolygonis heredter calledasymmet-
rically inscribedpolygon anddendedby I p,. Theorder of
edgesof P whosepottions arethe edgesof I p is refered
to asthe confgurationof Ip,. Sinceevely pair of symmet-
ric edgesof Ip, is contrituted by someedgeof P andby
its reflection Py, the corfigurationof the two halves of the
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bowndaryof Ip, (delimitedby ¢) areidenticalwith respect
totheedgeidentities,andhave theoppasite“origin” for each
edge(P or P;). Thus,theproblemwe actuallysolveis:

Problem 1 Given a simple polygan P, find the axis £°Pt

whoserespectivesymmetricallyinscribedpolygon I j’}’t is of
maximum area.

2 The Map of Axes

The numter of possibleconfigurationsis restrictedby the
nunberof intersection®f edge of the original polygon and
its mirrored version We corsiderall possibleconfiguations
of theinscribedpolygon; thenfor eachconfigurationwe find

thepolygonof maximun areaandfinally choosehelargest-
areapolygon. The problemis thussplit into two subpob-
lems:

Problem 1 Given a simple polygon, find all the possible
confgurationsof its inscribedpolygas.

Problem 2 Givena corfiguration C' of an inscribedpoly-
gon findtheinstanceof C' with maximurarea.

An inscribedpolygon is determired by the axis Z, s.t. a
charge of £ causes chamgein theinscribedpolygon. Only
more rarelywill asmallmovementof £ causeachang in the
configuration Thus, evely legal corfigurationcorresponds
to a setof axes. To alleviate the consicrationof the sets
of lines, we usea dudity transformthat mapslines of the
form £ : y = kx + b in the primal plane(XY") into points
£*(k, b) in thedualplane.Thus,thesetsof legd axesinduce
asubdvision of thedualplane. Thefacesn this planarmap
correspondo corfiguratiors of theinscriked polygons.

3 Geometric Description

To distinguishbetweeredgesf theoriginal polyga andthe
edge of themapin thedualplane we will referto thelatter
as“arcs’

While we movein thedud plane crossinganarcmeansa
charge in the combinatorial structue of the inscribedpoly-
gon Therearetwo basictypesof suchchanges:1. A new
edgeemepgesin the boundaryof I p, betweerntwo existing
edges; and2. An edgedisappess from the bourdary. Both
evertsareinvettible, andin fact,repesentwo aspect®f the
sameevert. (Fig. 1).

Let us analyzethe structue of Ip,. By definition its
bouwndaryis the union of two symmetricalchains: onecon-
taining edgesof P clippedby P, andthe othercontaining
edge of P, clippedby P. A new edgeemepes(resp, varn
ishes)betweentwo existing edgesof Ip,'s bourdary only
whensomeportion of anedgeof P, (or P) becomegresp,
ceaseso be)clippedby P (or P,). In otherwords,themajor
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Figurel: Changeof the combinatorial structure:£; and/s
aretwo lines,and/; and/¢} aretheir respectie dual points.
F andF;, aretherespectre configuationsof £, and/,; the
dual-ganeview shows the arc a that separateshe facesof
Fi andFQ.
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Figure 2: A reflectionof thevertex V ontheedgeAB

everts occu in conjurction with a chang of somepolygon-

edgeclipping. A clipping configurationis comhnatorially

alteredwhen a clipped edgechangs its position with re-

spectto an edgeof the clipping polygm. Actually we are
interestednly in thetouchirg everts, in which anendmint

of aclippededgelies on the clipping edge.The momet of

toucting correspondgo the appeaance(or disappeanace)

of anedgein the boundaryof theinscribedpolygon. Thus,

arcsof themapin thedualplanecorrespadto suchaxispo-

sitions,whereedgeof P touchedges of P, (andviceversa),
or, simply, whenverticesof P lie onedgesf P,. Thisleads
to thefollowing questionwhich we mustnow answer:

Problem1 Givena vertex v of the polygm P, find thefam-
ily of axesreflectingy onedgesof P.

Let AB beanede of P, s.t.theaxis? : y = kx + b reflects
avertex V of P to somepointV' thatlieson AB (Fig. 2(a)).
AssumdirstthatV ¢ AB andthatA, B,V arenoncdlinear.
Olwviously, £ passeshroughthe midpoint C' of the segmert
VV'" andis perendicdar to VV'. Usingthesefactswe can

calculatethe parametesof £: k = slope(lVV’ = —“},:“;:

andb = Cy —kC, = %(Vy +V, - (Va+V})) ) We obtain
N1k2+N2k+N3 Az

b(k) = _—— 1

(k) Dk + D, k# By—Ay’ @)

whereN; = —((V, + A;)(By — Ay) + (B — Az)(Vyy —

Ay), Ny =2((By — Ay)Vy — (B, — A;)V,), N3 = (V,, +

Ay)(By —Ay) + (By — Ay)(Vy — ‘.4””)’ D, =.2(By — Ay),
andD, = 2(B, — A;). Thedoman of b(k) is deternined
by the positiors of V, A, B, andmay consistof oneor two
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Figure3: An axispassinghrowgh a vertex
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(a) Polygm (b) Map

Figure4: A sampleconvex polygon andits correspndirg
plana mapin thedualplane

closedintenals. Thearcsdescribedy Eq. (1) arehereafer
referedto asarcsof typel.

The casein which A, B,V are collinear (Fig. 2(b)) re-
quires specialtreatment. The axis ¢ is perpeuicular to
AB, and conseqently, theline ¢ : y = kz + b has
a constantslope. The reflectedpoint V' sweepsalorg
AB betweenthe sggment endpants, so the arc in the
dual plane subdvision is a vertical line segmen with

the parametes k = —g“ﬁm, A, # B, andb €

[A +B AwAz, B, +B AEB} We hereafterrefer

to such edgesas arcsof typeII. If AB is hoiizontal (i.e.,
A, = B,), thentheslopeof £ is infinite. In sucha casewe
virtually move thearcto infinity.

Let us now hardle the casein which V' is either A or B
(assumaw.l.o.g. A). Hereary axispassinghroughV = A
mapsit to itself. The geneal equationof theseaxes(in the
dualplane)is b = —A;k + A,. It may be relatedto two
differentarc types. An axis passingthroudh a vertex may
crossthe polygon (anarc of typelll), or it may suppat the
polygonfrom the outside(typelV). In thelatter casethein-
scribedpolygondegereratego a singlepoint (the supprted
vertex). In the dual planewe conside the arcsof type IV
asthe“boundaries”of the map,beyond which theinscribed
polygonis empty

Both arctypes(lll andlV) aredescribedy the samefor-
mulaof a straightline. If we rotatethe axisarownd thever
tex, bothtypesmeetwhenthe axispasseshroud oneof the
polygon edgesincidentto the vertex. Fig. 3 illustratesthis
situation.In theprimd plane,theaxis passeshrowgh either
e1 Or e, Which aretwo polygon edgeghat sharethe vertex
A. In the dual plane,theseaxis positiors aretwo poirnts e}
ande} lying ontheline A*. Typeslll andlV alternateate;
ande; aswe goalongA*.

Fig. 4(a) shawvs a corvex polygon, while Fig. 4(b) shavs
the planarsubdvision inducedby this polygon in the dual
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Figure5: Sliding V' (thereflectionof V') alongP

plane.

4 Map Complexity

The planarsubdvision in the dual planeis inducedby a set
of m Jordanarcs,ary pair of which intersectdn at mosta
constannhunber of poirts (seebelav). Therefore,the com-
binatofal compleity of the arrargementthat they form is
O(m?). First,we needto shawv thatary two arcsintersecta
constantnumber of times. Secondwe will shav thatfor a
convex polygonthe compleity of themapcanbe consider
ablyimproved

The nunmber of intersectiorpointsof two arcsis indeeda
smallconstah Consideffirst two arcsof typel. By compar
ing two termsof the form asin Eq. (1), we obtaina culkic
equatia thathasat mostthreereal solutions. Intersectios
with otherarc typesare even simpler In all caseswe get
equatims of degree at most2, which have at mosttwo so-
lutions. The numter of arcsm is quadatic in n (the com-
plexity of P): eachvertex of P geneatesatmostn — 1 arcs
of typel, two arcsof type Il exterding oneanotter andre-
semblingonesegment,andafew arcs(upto six) of typesli|
and |V, which are collinearand are corsideredas a single
unbaundel arc. In total therearen + 1 arcspervertex and
n(n + 1) for all vettices,thusm = ©(n?) andthe subdii-
sioncompleity is O(m?) = O(n*). Notethatthis is true
for anysimplepolygon P.

However, for a corvex polygm the map comgexity is
O(n?), which is attainablein the worst case. To compue
thecompexity of thearragementve will court its vettices,
whichis sufiicientsincethisis aplanarmap
Intersections of arcs of type I. A trivial bourd is O(n?).
Insteadof isolatedarcswe will consicr chains of arcsgen-
eratedn thedualplaneby cortinuouslysweepingamirrored
vertex alongtheboundhry of P (exceptonthetwo edgesn-
cidentto it). Thatis, a chainis a corcatenatiorof all the
type-l arcsof the samevertex (Fig. 5). WhenVV"' is hor
izontal, the chainsplits into two. The corvexity of P en-

suresthata chainis k-momtone.Considertwo suchchains.

Eachchain consistsof n — 2 arcs,thusit contairs n — 1
arc-trarsition points. Hence,for ary two chainswe have
2n — 1 k-intervals in which eachchainis represeted by a
singlearc. Thetwo arcscaninterseciat mostthreetimesfor

atotal of at most3(2n — 1) intersectios betweenchains.

Sincetherearen(n — 1) /2 pairsof chains,we havein total
3n(n — 1)(2n — 1)/2 = O(n?) intersections.

Arcs of types | and Il. Due to the k-monotoricity of the
chainsof typel, ary verticd segmen (arc of type ll) can
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Figure6: Calculatingtheareaof Ip ¢

intersectit at mostonce. Therearen chainsandn vertical

segmerts, giving atotal of O(n?) intersectios.

Arcsof typesl and {II,IV }. Arcsof typeslil andIV can
behandledasa specialcaseof a chainthatintersectsa regu

lar chainin O(n) points. Thereare®(n) suchspecialchains
and®(n) regularchairs of typel, yielding O(n?) intersec-
tion poirts.

Arcs of types Il, Ill, and IV. All thesetogethe are 2n
straightlinesor line segmertsthatintersecin atmostO(n?)
poirts.

Thetotal numter of arcintersectiorpoints(andhercethe
total map compleity) is O(n?). In the full versionof the
pape we give a matchirg lower bourd in the worst case
by shaving thatthereexistsann-gon whoserespectire map
in the dual planehascomgexity ©(n?). In conclision, we
have:

Theorem1 For a corvex polygonthe compleity of the pla-
nar subdivisiorin thedualplaneis ©(n?) in theworst case

5 Maximizing the Area of the Inscribed Polygon

5.1 Area Function

We assumethat the configuation of Ip, is givenasa se-
querceof edgesof P: {ly,ls,...,l,n} (m < 2n). Theedges
of Ip, arerepresentedy linesl;, for eachof whichwe store
atriple (k;, b;, i), wherek; andb; areline coeficients and
;i equds 1 (resp.,-1) if the edgebelong to P (resp.,its
reflectior).

We rotatethe planeso asto make ¢ X-parallel (Fig. 6).
The verticesQ; of Ip, canbe determired asintersections
of pairs of neightoring lines; andl;;;. Simple analytic
geonetryyieldstheareafunction

- bibit1
S(b,k)=2(2k oy

ki1 —kip1 )
SN\ ki -k )/’

(kim1 — ki) (ki — ki

with the corvention kg = by = k41 = b1 = 0. The
areafunction for asimplepolygm is identical. Theonly dif-
fererceis thattheinscribedsymmetic polygan maycortain
several disconrectedcompaents.

Fig. 7 plotstheareaof theinscribel polygon(asafunction
of b andk) for asquare.

5.2 Maximizing the Area Function

Finally we find a global maximum of S(k,b) within each
cell of themapin thedualplane.This optimizationprodem
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Figure7: TheareafunctionS(k, b)

is analyticallyintractatbe [4] becase of the compleity of
the objective function, hen@ we resortto numercal meth-
ods. Formally, we needto maximze a low-dimensionalra-
tional polynomial with mary terms. The objective function
is uncorstrained(i.e., the solution does not have to fulfill

ary other constraints)ut the optimum is sough within a
bourdedregion.

A descriptionof a hostof algorithrrs for a global opti-
mizationandavailableimplemenationsis found in [3]; we
provide more detailsin the full versionof this paper We
implemerted a simple methodthat works well in practice.
We evaluateS(k, b) in reguarly-scatterecpoints within the
curren cell and chaosethe bestpoint (w.r.t. the objectve
function) asthe first appoximation of the optimum. Then
we iteratively resamplethe function at the vicinity of the
currert optimum and vary the sampling resoldion, com-
bining steepest-desceand simulatedannealingheuristics.
We stopwhenno sufficiently-improving poirt is found ary
more.

6 Running-Time Analysis and Implementation

Our algorithm computesthe maximum-areaaxis-symmeic
polygon inscribedby anotherpolygon P usingthe follow-
ing steps: 1. For eachvertex V; € P compue the arcsof
the planarsubdvision M in the dual plane Constriect M.
2. For eachfaceof M computethe associate@reafunction
(of symmetriclly inscribedpolygons)andfind its maximum
(within the face). 3. Reportthe global maximun asthe an-
swer

If P is convex, the combiratorial comgexity of M is
O(n®) in the worst case,wheren is the comgexity of P.
Constructig M canbe doneby a planesweepprocedire
whoserunring time is O(n? logn). In eachfacewe needto
computetheareafundion andfind its maximum. Compuing
theareafunctionof thefirst facetakesO(n) time. Updating
theareafunctionwhile moving from afaceto a neightoring
facecanbedonein corstanttime by addingandsubtracting
only afew terms.Thus, theamoun of time neeadfor com-
putingall theareafunctionsis propational to thenumbe of
faces thatis, O(n®). Maximizing the areafunction within
a faceis doneby a numeri@al method In theowy the opti-
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Figure 8: Screersnapshobf thesystem

mizationproblemis intractable In practicetherunring time
of the “black box” that solvesthe optimizationprodem de-
pend linearly on the numker of termsin the objective func-
tion (n, in our case)/inearly on the comgexity of thecell’'s
bouwndary andontheconvergenceparameteito whichwere-
fer asa constantOn averagethe compleity of asinglecell
is constant, for atotal of O(n?) for all the cells. We dende
by T (n) theaveragetime compleity of theoptimizationstep
in asinglecell; in practiceT'(n) = O(n). In total, therun
ning time of the algorittm is O(n3(logn + T'(n))). For a
simplepolygontherunring timeis O(n*(logn + T'(n))).

We implementedthe entire algoiithm for corvex inscrib-
ing polygons. The software waswritten in C++ unde the
Windows operatig system.It corsistsof about6,50 lines
of code,andit alsousesthe geonetric packageCGAL, the
GUI toolkit Qt, and an Open Inventor compatilbe toolkit
Coin3D.Our systemoffersaninteractive tool thatvisualizes
the objeds, conceptsandrelationspresentedn the paper
Fig. 8 shavs a screersnapshbof our system.
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