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In thispaperweresolvethefollowing problem: Givenasim-
ple polygon � , what is the maximum-areapolygon that is
axially symmetric andis containedby � ? Weproposeanal-
gorithm for answeringthisquestion,analyzethealgorithm’s
complexity, anddescribe our implementationof it (for con-
vex polygons). The algorithm is basedon building andin-
vestigating a planarmap,eachcell of which correspondsto
a differentconfigurationof theinscribedpolygon.We prove
thatthecomplexity of themapis ��������� , where� is thecom-
plexity of � . For a convex polygon the complexity, in the
worstcase,is ��������� . !#" �$
&%('*)+
,�$-.% "
Containment problemshavealwaysheldanimportant rolein
discreteandcomputationalgeometry. In general, a contain-
mentproblemmeansthatwearegivensomeobjectandthen
areaskedto computea containing or containedobjectsatis-
fying someadditional criteria (see,e.g.,[2, 1]), asit relates
to thefirst object. In thecurrentwork we seeka maximum-
areapolygoncontainedby a givensimple(or convex) poly-
gon,with therestrictionthattheinscribedpolygonis axially
symmetric.Themainmotivation for this problem is indus-
trial, originatingfrom theneedto calculateshapesthatareto
becut from metalandclothsheets.

Definition 1 Given a simplepolygon � in the plane, an-
other polygon /1032 4 is called symmetriccontainedin � if
(1) /5032 4768� ; and (2) /1032 4 is symmetricabout someline
(axis) 9 .

Amongall symmetric polygonscontainedin � with some
axis of symmetry 9 , the onewith the maximum areais the
intersectionof � andits reflectionwith respectto 9 , denoted
as �:4 . Theaxially-symmetricpolygon containedin a simple
(nonconvex) polygon may consistof several disconnected
components. In the caseof a convex polygon, the axially-
symmetriccontainedpolygon is alwaysconnectedandcon-
vex. Theboundaryof �<;=� 4 consistsof portionsof edges
of � andof � 4 . Suchapolygonis hereafter calledasymmet-
rically inscribedpolygon anddenotedby > 032 4 . Theorder of
edgesof � whoseportionsaretheedgesof > 032 4 is referred
to astheconfiguration of > 0?2 4 . Sinceevery pair of symmet-
ric edgesof > 032 4 is contributed by someedgeof � andby
its reflection � 4 , the configurationof the two halves of the@
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boundaryof > 032 4 (delimitedby 9 ) areidenticalwith respect
to theedgeidentities,andhavetheopposite“origin” for each
edge( � or � 4 ). Thus, theproblemweactuallysolve is:

Problem 1 Given a simple polygon � , find the axis 9�CED$F
whoserespectivesymmetricallyinscribedpolygon > CED$F0 is of
maximum area.G HJILKNM ��O7%LPQ�QR K �
The number of possibleconfigurationsis restrictedby the
numberof intersectionsof edges of theoriginal polygonand
its mirrored version. We considerall possibleconfigurations
of theinscribedpolygon; thenfor eachconfigurationwefind
thepolygonof maximum area,andfinally choosethelargest-
areapolygon. The problem is thussplit into two subprob-
lems:

Problem 1 Given a simple polygon, find all the possible
configurationsof its inscribedpolygons.

Problem 2 Givena configuration / of an inscribedpoly-
gon, findtheinstanceof / with maximumarea.

An inscribedpolygon is determined by the axis 9 , s.t. a
changeof 9 causesa changein theinscribedpolygon. Only
morerarelywill asmallmovementof 9 causeachangein the
configuration. Thus,every legal configurationcorresponds
to a set of axes. To alleviate the considerationof the sets
of lines, we usea duality transformthat mapslines of the
form 9TS�UWV8XLY[Z]\ in the primal plane( ^N_ ) into points9�`,�aX(bc\d� in thedualplane.Thus,thesetsof legal axesinduce
asubdivisionof thedualplane.Thefacesin this planarmap
correspondto configurations of theinscribedpolygons.e f5K %3g K �$
�-.
Th K �$
i
�-jOL�$-.% "
To distinguishbetweenedgesof theoriginal polygon andthe
edges of themapin thedualplane,we will referto thelatter
as“arcs.”

While wemovein thedual plane, crossinganarcmeansa
change in thecombinatorialstructure of the inscribedpoly-
gon. Therearetwo basictypesof suchchanges:1. A new
edgeemergesin theboundaryof > 032 4 betweentwo existing
edges; and2. An edgedisappears from theboundary. Both
eventsareinvertible, andin fact,representtwo aspectsof the
sameevent. (Fig. 1).

Let us analyzethe structure of > 032 4 . By definition, its
boundaryis theunionof two symmetricalchains:onecon-
tainingedgesof � clippedby � 4 , andthe othercontaining
edges of � 4 clippedby � . A new edgeemerges(resp., van-
ishes)betweentwo existing edgesof > 0?2 4 ’s boundary only
whensomeportion of anedgeof �54 (or � ) becomes(resp.,
ceasesto be)clippedby � (or �k4 ). In otherwords,themajor

128



CCCG 2004, Montreal, Quebec, August 9–11, 2004

lnm
l	op

q m q o
p lro

ldm

(a)Primalplane

l @o
l @ m
q oq m s

l @o
l @ m
q oq m s
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Figure1: Changeof the combinatorial structure: 93t and 9�u
aretwo lines,and 9�`t and 9�`u aretheir respective dualpoints.v t and

v u aretherespective configurationsof 9�t and 9�u ; the
dual-planeview shows the arc w that separatesthe facesofv t and

v u .4 xy z|{1}z z�{ }xz 4y
(a) ~kb���b�� noncollinear (b) ~�bc��b�� collinear

Figure 2: A reflectionof thevertex ~ on theedge���
events occur in conjunctionwith a change of somepolygon-
edgeclipping. A clipping configurationis combinatorially
alteredwhen a clipped edgechanges its position with re-
spectto an edgeof the clipping polygon. Actually we are
interestedonly in thetouching events, in which anendpoint
of a clippededgelies on theclipping edge.Themoment of
touching correspondsto the appearance(or disappearance)
of anedgein theboundaryof the inscribedpolygon. Thus,
arcsof themapin thedualplanecorrespondto suchaxispo-
sitions,whereedgesof � touchedgesof ��4 (andviceversa),
or, simply, whenverticesof � lie onedgesof �54 . This leads
to thefollowing question, whichwemustnow answer:

Problem1 Givena vertex � of thepolygon � , find thefam-
ily of axesreflecting� onedgesof � .

Let ��� beanedge of � , s.t. theaxis 9�S�U�V<XLY�Z�\ reflects
avertex ~ of � to somepoint ~�� thatlieson ��� (Fig.2(a)).
Assumefirst that ~��� ��� andthat ��bc��br~ arenoncollinear.
Obviously, 9 passesthroughthemidpoint / of thesegment~�~�� andis perpendicular to ~�~�� . Usingthesefactswe can

calculatetheparameters of 9 : XTV�� t��� �����r� z�z {�� V�� z:{��� z �z {� � z �
and \QV]/5�k�TX+/���V tu   ~?�¡Z7~��� �¢�£~3�kZ7~��� ��X�¤ . Weobtain

\,�aX+��V8¥ t$X u Z ¥ unX¦Z ¥ �§ t X¦Z § u b¨XN©Vª� � � �«� ��J���«��� b (1)

where ¥ t V¬�����£~3�¦Z­���®�d���J�������i�¨Z¯�£���������®�d�£~3�������� , ¥ u V±°?�²���J���W������~?���­���J�¦�W�����²~3��� , ¥ � V³�a~?��Z�����d���J���´�����*Zµ���J�5�7�����$�a~?���7����� , § t V<°+�£�����7����� ,
and

§ u�V³°+�£� � �¶� � � . Thedomain of \��£X+� is determined
by the positions of ~�bc��bc� , andmayconsistof oneor two
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(a)Primalplane (b) Dual plane

Figure3: An axispassingthrougha vertex

(a)Polygon (b) Map

Figure4: A sampleconvex polygon andits corresponding
planar mapin thedualplane

closedintervals. Thearcsdescribedby Eq.(1) arehereafter
referredto asarcsof typeI.

The casein which ��bc��br~ are collinear (Fig. 2(b)) re-
quires special treatment. The axis 9 is perpendicular to��� , and consequently, the line 9¾SWU¿V X�YÀZÁ\ has
a constantslope. The reflectedpoint ~Â� sweepsalong��� betweenthe segment endpoints, so the arc in the
dual plane subdivision is a vertical line segment with
the parameters XÃV � } � � x �} � � x � bW���Ä©V �J� and \ �Å � � Z } � � x �} � � x � � � b´� � Z } � � x �} � � x � � �,Æ . We hereafterrefer

to suchedgesas arcsof type II . If ��� is horizontal (i.e.,� � VÇ� � ), thentheslopeof 9 is infinite. In sucha casewe
virtually move thearcto infinity.

Let us now handle the casein which ~ is either � or �
(assumew.l.o.g. � ). Hereany axispassingthrough ~�VÈ�
mapsit to itself. Thegeneral equationof theseaxes(in the
dual plane)is \´VÉ�1� � X�Z<� � . It may be relatedto two
differentarc types. An axis passingthrough a vertex may
crossthepolygon (anarcof typeIII ), or it maysupport the
polygonfrom theoutside(typeIV). In thelattercasethein-
scribedpolygondegeneratesto a singlepoint (thesupported
vertex). In the dual planewe consider the arcsof type IV
asthe“boundaries”of themap,beyondwhich theinscribed
polygonis empty.

Both arctypes(III andIV) aredescribedby thesamefor-
mulaof a straightline. If we rotatetheaxisaround thever-
tex, bothtypesmeetwhentheaxispassesthrough oneof the
polygon edgesincidentto the vertex. Fig. 3 illustratesthis
situation.In theprimal plane,theaxispassesthrough eitherÊ t or Ê u , which aretwo polygon edgesthatsharethevertex� . In thedualplane,theseaxispositions aretwo points Ê `t
and Ê `u lying on theline ��` . TypesIII andIV alternateat Ê `t
and Ê `u aswegoalong ��` .

Fig. 4(a)shows a convex polygon,while Fig. 4(b) shows
the planarsubdivision inducedby this polygon in the dual
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(a)Primalplane (b) Dualplane

Figure5: Sliding ~�� (thereflectionof ~ ) along �
plane.Ð M ��O¢Ñ�%*g[O?Ò K RL- ��Ó
Theplanarsubdivision in thedualplaneis inducedby a set
of Ô Jordanarcs,any pair of which intersectsin at mosta
constantnumberof points (seebelow). Therefore,thecom-
binatorial complexity of the arrangementthat they form is����Ô u � . First, we needto show thatany two arcsintersecta
constantnumberof times. Second, we will show that for a
convex polygonthecomplexity of themapcanbeconsider-
ably improved.

Thenumberof intersectionpointsof two arcsis indeeda
smallconstant. Considerfirst two arcsof typeI. By compar-
ing two termsof the form asin Eq. (1), we obtaina cubic
equation thathasat mostthreereal solutions. Intersections
with otherarc typesareeven simpler. In all caseswe get
equations of degreeat most2, which have at most two so-
lutions. The number of arcs Ô is quadratic in � (the com-
plexity of � ): eachvertex of � generatesat most �½��Õ arcs
of type I, two arcsof type II extending oneanother andre-
semblingonesegment,anda few arcs(upto six) of typesIII
and IV, which arecollinearandareconsideredas a single
unbounded arc. In total thereare �½Z¯Õ arcspervertex and�����TZ<Õ�� for all vertices,thus Ô¾VÖ����� u � andthesubdivi-
sion complexity is ����Ô u ��VÁ�����×�,� . Note that this is true
for anysimplepolygon � .

However, for a convex polygon the map complexity is��������� , which is attainablein the worst case. To compute
thecomplexity of thearrangementwewill count its vertices,
which is sufficientsincethis is aplanarmap.
Intersections of arcs of type I. A trivial bound is �����k��� .
Insteadof isolatedarcswe will consider chains of arcsgen-
eratedin thedualplaneby continuouslysweepingamirrored
vertex alongtheboundaryof � (exceptonthetwo edgesin-
cident to it). That is, a chain is a concatenationof all the
type-I arcsof the samevertex (Fig. 5). When ~�~ � is hor-
izontal, the chainsplits into two. The convexity of � en-
suresthata chainis X -monotone.Considertwo suchchains.
Eachchainconsistsof �=�¯° arcs, thus it contains �¶�ØÕ
arc-transition points. Hence,for any two chainswe have°,�¢�<Õ¦X -intervals in which eachchainis represented by a
singlearc.Thetwo arcscanintersectat mostthreetimesfor
a total of at most Ù?�a°,�W�ªÕ�� intersections betweenchains.
Sincethereare �����´�­Õ��c��° pairsof chains,we have in totalÙ������[�µÕ��d�£°��[�µÕ��c��°¦VÚ��������� intersections.
Ar cs of types I and II. Due to the X -monotonicity of the
chainsof type I, any vertical segment (arc of type II) can

XÛ×Ü � t
Ý Ü Þ ÜÝ#Ü � t Þ Ü � t Û×ÜÝ Üàß t Ý Üàß uÞ Üàß t

Figure6: Calculatingtheareaof >�032 4
intersectit at mostonce. Thereare � chainsand � vertical
segments,giving a total of ����� u � intersections.
Ar csof typesI and á III,IV â . Arcs of typesIII andIV can
behandledasa specialcaseof a chainthatintersectsa regu-
lar chainin �����:� points. Thereare �����:� suchspecialchains
and �����:� regularchains of typeI, yielding ����� � � intersec-
tion points.
Ar cs of types II, III, and IV. All thesetogether are °,�
straightlinesor line segments thatintersectin atmost ����� u �
points.

Thetotalnumberof arcintersectionpoints(andhencethe
total mapcomplexity) is �����¨��� . In the full versionof the
paper we give a matching lower bound in the worst case
by showing thatthereexistsan � -gon whoserespective map
in thedualplanehascomplexity �����k��� . In conclusion,we
have:

Theorem1 For a convex polygon thecomplexity of thepla-
nar subdivisionin thedualplaneis �����k�n� in theworst case.ã M �®RL-�g[-.ä�- "Lå � ILK ��
 K �½%�P�� ILK¢!æ" �$
i
�-�� K 'Wç�%?Ò Ó å % "ã×è  ��
 K �«é+) " 
,�$-.% "
We assumethat the configuration of > 032 4 is given as a se-
quenceof edgesof � : á Ý t b Ý u bdêàêjêàb Ý#ë â ( ÔÉì<°,� ). Theedges
of >n0?2 4 arerepresentedby lines

Ý Ü
, for eachof whichwestore

a triple �£X Ü br\ Ü b�í Ü � , where X Ü and \ Ü areline coefficients andí Ü equals 1 (resp.,-1) if the edgebelongs to � (resp.,its
reflection).

We rotatethe planeso as to make 9¦^ -parallel (Fig. 6).
The vertices Þ Ü of >d032 4 canbe determined as intersections
of pairs of neighboring lines

Ý Ü
and

Ý Üjß t . Simple analytic
geometryyieldstheareafunctionÛ �£\�brX+��V ëî Üjï t   ° \ Ü \ Üàß tX Üàß t �WX Ü Z¶\ uÜ X Ü � t5�WX Üàß t�£X Ü � t �WX Ü �$�aX Ü �ðX Üjß t � ¤ b
with the convention X+ñ´V¬\rñ´V¬X ë5ß t½V¬\ ë5ß t[VÁò . The
areafunction for asimplepolygon is identical.Theonly dif-
ferenceis thattheinscribedsymmetric polygon maycontain
several disconnectedcomponents.

Fig.7plotstheareaof theinscribed polygon(asafunction
of \ and X ) for a square.ã×è G M ��R�-�g[-.ä�- "�å � I�K ��
 K �«é�) " 
,�$-.% "
Finally we find a global maximum of

Û �aX(bc\$� within each
cell of themapin thedualplane.This optimizationproblem
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Figure7: Theareafunction
Û �£X×bc\$�

is analytically intractable [4] becauseof the complexity of
the objective function, hence we resortto numerical meth-
ods. Formally, we needto maximize a low-dimensionalra-
tional polynomial with many terms. Theobjective function
is unconstrained(i.e., the solution does not have to fulfill
any other constraints)but the optimum is sought within a
boundedregion.

A descriptionof a host of algorithms for a global opti-
mizationandavailableimplementationsis found in [3]; we
provide more details in the full versionof this paper. We
implemented a simplemethodthat works well in practice.
We evaluate

Û �aX(bc\$� in regularly-scatteredpoints within the
current cell and choosethe bestpoint (w.r.t. the objective
function) as the first approximationof the optimum. Then
we iteratively resamplethe function at the vicinity of the
current optimum and vary the samplingresolution, com-
bining steepest-descentandsimulated-annealingheuristics.
We stopwhenno sufficiently-improving point is found any
more.ó ô�) "3" - "�å�õ²H -�g K � " ��Ò Ói�d- �¦� " ' ! g½O+Ò K g K�" �	���$-.% "
Our algorithm computesthemaximum-areaaxis-symmetric
polygon inscribedby anotherpolygon � usingthe follow-
ing steps: 1. For eachvertex ~ Ü � � compute the arcsof
the planarsubdivision ö in the dual plane. Construct ö .
2. For eachfaceof ö computetheassociatedareafunction
(of symmetrically inscribedpolygons)andfind its maximum
(within the face). 3. Reporttheglobal maximum asthean-
swer.

If � is convex, the combinatorial complexity of ö is��������� in the worst case,where � is the complexity of � .
Constructing ö can be doneby a plane-sweepprocedure
whoserunning time is �����¨��÷àøiù��:� . In eachfacewe needto
computetheareafunctionandfind its maximum. Computing
theareafunctionof thefirst facetakes �����:� time. Updating
theareafunctionwhile moving from a faceto a neighboring
facecanbedonein constanttime by addingandsubtracting
only a few terms.Thus, theamount of time neededfor com-
putingall theareafunctionsis proportional to thenumber of
faces,that is, �����:��� . Maximizing the areafunctionwithin
a faceis doneby a numerical method. In theory the opti-

Figure 8: Screensnapshotof thesystem

mizationproblemis intractable. In practicetherunning time
of the“black box” thatsolvestheoptimizationproblem de-
pends linearly on thenumber of termsin theobjective func-
tion ( � , in our case),linearly on thecomplexity of thecell’s
boundary, andontheconvergenceparameter, towhichwere-
fer asa constant.On averagethecomplexity of a singlecell
is constant,1 for a total of ��������� for all thecells. We denote
by ú����:� theaveragetimecomplexity of theoptimizationstep
in a singlecell; in practiceú����:�1V³�����:� . In total, therun-
ning time of the algorithm is ����������÷àøiù��NZÚú����:���²� . For a
simplepolygontherunning time is �����k�L��÷àøiùû�üZ=ú����:�²�²� .

We implementedtheentirealgorithm for convex inscrib-
ing polygons. The softwarewaswritten in C++ under the
Windows operating system.It consistsof about6,500 lines
of code,andit alsousesthegeometric packageCGAL, the
GUI toolkit Qt, and an Open Inventor compatible toolkit
Coin3D.Oursystemoffersaninteractivetool thatvisualizes
the objects, concepts,andrelationspresentedin the paper.
Fig. 8 showsa screensnapshot of oursystem.ô K P K 
 K�" 
 K �
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[3] J.D. PINTÈR, Continuousglobal optimization software: A brief re-
view, Optima, 52 (1996),1–8.

[4] A.H.G. RINNOOY AND G.T. TIMMER, New Methods in Optimiza-
tion andtheir Industrial Uses,BirkhäuserVerlag,Basel,1989.

1However, thecomplexity of asinglecell canbesuperlinearin theworst
case.
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