An Average Running Time Analysis of a Backtracking Algorithm to Calculate the Measure of the Union of Hyperrectangles in *d* Dimensions

Susumu Suzuki*

Toshihide Ibaraki[†]

Abstract

Problem MEASURE is the problem to calculate the measure of the union of *n* hyperrectangles $R_i = [b_{i1}, e_{i1}] \times \cdots \times [b_{id}, e_{id}], i = 1, \ldots, n, \text{ in } d \ge 2$ dimensions, $| \cup_{i=1}^n R_i |$, where b_{ij} and e_{ij} are numbers such that $b_{ij} \le e_{ij}$ [3]. An $O(n^{d-1} \ln n)$ worst-case time algorithm to solve MEA-SURE for $d \ge 2$ [1] and an $O(n^{d-1})$ worst-case time algorithm for $d \ge 3$ [2] are known. In this paper, we propose a backtracking algorithm to solve MEASURE, analyze its average running time ((4) to (7) in Section 5), and show that the backtracking algorithm is more efficient than the former algorithms[1, 2] when $d \ge 3$ and there are many large hyperrectangles R_i ((8) and (9) in Section 6).

1 Introduction

The problem MEASURE is defined as follows[1, 2, 3]:

Definition *n* hyperrectangles $R_i = [b_{i1}, e_{i1}] \times \cdots \times [b_{id}, e_{id}], i = 1, \ldots, n, \text{ in } d \geq 2$ dimensions are given, where b_{ij} and $e_{ij}, i = 1, \ldots, n, j = 1, \ldots, d$, are numbers such that $b_{ij} \leq e_{ij}$. Calculate the measure of the union of those hyperrectangles, $|\bigcup_{i=1}^n R_i| = |\{(x_1, \ldots, x_d) \mid \exists i(1 \leq i \leq n), (x_1, \ldots, x_d) \in R_i\}|$. \Box

Example When 2-dimensional hyperrectangles (i.e., rectangles) $R_1 = [0,3] \times [0,4], R_2 = [0,5] \times [1,8]$ and $R_3 = [4,8] \times [0,8]$ are given, $|R_1 \cup R_2 \cup R_3| = 63$ (Figure 1). \Box

For MEASURE, Bentley[1] gave an algorithm that can solve the problem for $d \ge 2$ in the worst-case time $O(n^{d-1} \ln n)$, and Leeuwen and Wood[2] did an algorithm for $d \ge 3$ in the worst-case time $O(n^{d-1})$. In the paper, ln and lg denote \log_e and \log_2 , respectively.

By the way, MEASURE can be considered a generalization of the problem to count the number of unsatisfying assignments of the satisfiability problem SAT, which is denoted by COUNT-SAT in this paper. For example, the COUNT-SAT problem to count the number (denoted by N') of unsatisfying assignments for the DNF equation *R*₂

 R_1

 R_3

^{*}Department of Applied Information Science, Aichi Institute of Technology, Toyota, Japan, susumu-suzuki@aitech.ac.jp. The author was supported by a grant from the Nitto Foundation.

[†]Department of Informatics, Kwansei Gakuin University, Sanda, Japan, ibaraki@ksc.kwansei.ac.jp