
16th Canadian Conference on Computational Geometry, 2004

Computing the Set of All Distant Horizons of a Terrain

DanielArchambault
�

William Evans
�

David Kirkpatrick
�

���������
	���
Westudytheproblemof computingthesetof all distanthori-
zonsof a terrain,representedaseither: the setof all edges
that appear in the setof all distanthorizons; the connected
setsin theunion of all pointsthatappearin thesetof all dis-
tanthorizons(thesetof edge fragments); or a searchstruc-
ture to efficiently calculatethe edgefragments or edgeson
a distanthorizon from a particular viewing direction. We
describea randomizedalgorithm that canbe usedto solve
all threeforms of theproblem with anexpectedrun time of�������������

for any ����� where
�

is thenumberof edgesin the
piecewise linear terrain. We show thatsolvingeitherof the
first two versionsof theproblem is 3SUMhard,andwe also
construct aterrainwith asinglelocalmaximaandaquadratic
number of edgefragmentsin thesetof all distanthorizons,
showing thatour solutionto thesecondversionof theprob-
lem is essentiallyoptimal.
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A terrain is a piecewiselinear, two-dimensionalfunction in
threedimensions. It is representedusinga polyhedral mesh
composedof faces,edges,andvertices. Thefunction is de-
finedover the .0/ -planeandthefunction value or 1 valueof
theterrainis thepoint’s height or altitude. Intuitively, a dis-
tant horizon of theterrainis a horizon from somehorizontal
viewing direction. Formally, a point on an edgeof the ter-
rain appears on thedistanthorizon if andonly if it supports
a horizontal line 2 (parallel to the .0/ -plane)that doesnot
properly intersecttheterrain. Sucha line 2 is calleda hori-
zontalvisual line in thevisualhull literature [11] [12].

Our goal is to compute thesetof all distanthorizonsof a
terrain.Onemotivation for this goalis to obtaina represen-
tationof the terraindatathat is lessdetailedandthusfaster
to render, but thatcloselyapproximatestheview of thetrue
terrainwhenrenderedfrom any distantview point.Wecould
queryfor this distanthorizon givena horizontal viewing di-
rectionor we could pre-calculate the set of edgesor edge
fragmentsthat contribute to the setof all distanthorizons.
By rendering this pre-calculatedsetof edges,we render an
accuratedistanthorizonindependentof thehorizontalview-
ing direction. We therefore consider threeversionsof the
distanthorizon problem:
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1. The problem of computing all distant horizon edges
(the setof terrainedges that contribute to at leastone
distanthorizon).

2. The problem of computing the setof all distant hori-
zon edge fragments (the setof terrainedge fragments
that contribute to at leastonedistanthorizon). These
edgefragmentsarethe connectedsetsin the union of
all pointson the terrainthatappearin at leastonedis-
tanthorizon.

3. The problem of computing a querydatastructure that
returns the set of edge fragments or the set of edges
from agivenhorizontal viewing direction.

The paperplacesour resultsin the context of previous
work, describesan algorithmto compute the setof all dis-
tanthorizons of a terrain,andthendiscussesthecomplexity
of eachof theproblemsdescribedabove.
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Theproblemof computingthehorizonof aterrainof

�
edges

from asingleviewing directioncanbereducedto computing
the upper envelopeof

�
line segments in the plane. A sin-

gle horizon hasnearlinearcomplexity F �G��HI�G���E� [4] whereHJ�����
is theinverseAckermannfunction, avery slow growing

function that canbe considered constant for mostpractical
values of

�
. Many algorithms exist to compute thehorizon

from a single view point. Atallah [2] describesa divide-
and-conquer schemeto compute the upperenvelopeof

�
line segments in

������HJ������KMLJ���
time by recursively divid-

ing the line segments into halvesandpairwisemerging the
resultant upper envelopesvia a sweepline technique. Her-
shberger [10] improves the running time of the algorithm
to
�����NKOLP���

by carefully selectingthe halves in Atallah’s
schemeto ensurethat theupper envelopeshave linearcom-
plexity at eachlevel. De Floriani andMagillo [7] describe a
randomizedalgorithm thatcomputesthehorizonof a terrain
in
���G��HI�G���QKOLI���

expected time. Thealgorithmusesa data
structure that can insert or remove line segmentsfrom the
horizonastheviewpoint changesor if theterrainchangesits
level of detail. Stewart [14] develops analgorithm thatcan
computetheapproximatehorizonof aterrainatall

�
vertices

of the terrain in parallel. He dividesthe view around each
vertex into R sectorsandassumesthattheelevation within a
sectoris constant,leadingto analgorithm with a runtime of�����NKOL � �TS R ��� .
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Therehasbeensomework doneon boundingthenumber
of combinatorially distinct orthographic views of a terrain.
Two suchviews aredistinct if the two setsof edges,faces,
vertices,andintersectionsvisiblein thetwo projectionsfrom
thetwo viewing directionsaredistinct.DeBerg etal. show a
lowerboundof U ���WVXHI�G���E� for any ����� [5], while Agarwal
andSharirshow anupper bound of

���G�YV ��� �
for any ���Z�

([1] and[9]). A criticalpartof theproofin [9] isdualizingthe�
edgesof theterraininto

�
setsof

�\[=]
bivariate functions

of bounded,constant degreeandtaking the upper envelope
of each.Our algorithm usesa similar dualization transform
to compute the setof all distanthorizons andthe resulting
functions canbe shown to be of bounded,constant degree.
We describethisalgorithmin thenext section.
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An edgeappearson thedistanthorizon if andonly if it sup-
portsa horizontal visual line. If we intersecta terrainwith
an arbitrary vertical plane r thenonly the edgewhose in-
tersectionpoint is of highestaltitudesupports a horizontal
line in r that satisfiesthis definition (figure 1 right). All
otherhorizontal tangentsin r to the edgesthat intersectr
mustproperly intersecttheterrain.Thus,we couldcompute
thesetof distanthorizonsby transformingeachterrainedges into a surfacepatch

�GtBu@vwu�x�yw��tzu�v#�{�
in a dual

��tzu�vwu@|:�
-

space,wherethe partial function
x y ��tzu�v#�

is the height of
the edges in theverticalplane r whosevertical projection
hasslope

t
andy-intercept

v
. Let theedges have vertices� .g} u /�} u@| } � and

� . � u / � u�| � � . For a fixedslope
t

,
v } ��t~���/�} [ .'} t givesthey-interceptof theunique horizontalline

with slope
t

passingthrough thevertex
� .P} u /�} u�| } � . Sim-

ilarly,
v � ��t~��� / � [ . � t for

� . � u / � u�| � � . The functionx y �GtBu@v#�
for thisedgeis givenby1:

x y ��tzu�v#���

������������ �����������

��| � [�| } � vI[=v } �Gt��v � �Gt���[=v } ��t~� S�| } uv���� v } ��t~��u@v � �Gt��%��uv } ��t~�n���v � ��t~�
�T�� ��| } u�| � ��vk��v } �Gt�����v � �Gt��
undefined otherwise

We canuseanupperenvelopecalculation[9], [13], or [3]
to compute theupperenvelopeof the surfacepatchesasso-
ciatedwith the terrainedgesin dual

��tzu�vwu@|:�
-space. This

upper envelopecanbecomputed in
����� �{��� �

for any ���Z�
time [9] andsolvesversions(1) and(2) of the problem as
statedin theintroduction.

1Potentially, problemscould arisewhen ����� , but this casecanbe
handledasa special case.
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Figure1: Thediagramshows two views of theterrain.Left:
Verticalprojectionof r andtheterrain.Theconcentric poly-
gons of different colours represent the contour lines of the
terrainat different altitudes. Right: The vertical slice r of
theterrain.
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We canusethe output of the above describedalgorithm to
query for a distanthorizon given a horizontal viewing di-
rection. In particular, oncetheupper envelopein

�GtBu@vwu�|)�
-

spaceis known, a querydatastructure canbeconstructedin����� ����� KOLP���
timefor any �k�C� , to determine theedgefrag-

mentsor theedges thatlie onthedistanthorizon from ahor-
izontal viewing direction. We construct this datastructure
by projecting the upper envelopedown onto the

t�v
-plane

from above. The
t~v

-plane is thendivided into a number
of regions,whicharecalledpatches, wherea bivariatefunc-
tion

x y ��tzu�v#�
realizesthe upperenvelope. By determining

theextentof a patchin the
t

direction, we createintervals
of horizontalviewing directionsfor whichanedgefragment
appearson thedistanthorizon. We loadtheseintervals into
an interval tree[6] so that they canbe efficiently searched.
If we only want to know the edgesthat appear on the dis-
tanthorizon, we merge overlappingintervalsresultingfrom
thesameedgeinto a singleinterval. If we wantto know the
precisedistanthorizon, we storethe equations definingthe
boundaryof thepatcheswith theinterval.

Givenahorizontalviewingdirection
t

, the R edgesonthe
distanthorizon canbedeterminedin

����KOLP��S R � time since
eachof the R edgesis reported exactly once. The precise
distanthorizonor edgefragmentson it canbedeterminedin����KOLP��S�§*�

time where
§

is thenumber of edgefragments
on this distanthorizon. Thevalueof R is at most

�
andthe

valueof
§

is atmost
���G��HI�G���E�

.
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In this section,we show that the problem of computing all
distanthorizon edges,or even determining the cardinality
of this set, is 3SUM hard. This leadsone to believe that
algorithms with sub-quadratic run times to compute the
solution to this problem areunlikely to exist. The 3SUM
hardnessreduction is from the GeomBase problem [8] and
is similar to Gajentaanand Overmars’ [8] reduction from
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GeomBa° se to Separator1. The Geombase problem hasthe
following definition:

GeomBase: Given a set of
�

points with integer co-
ordinates on three horizontal lines / � � , / �±]

, and/ ��²
, determine whether there exists a non-horizontal line

containing three points.

A terrainequivalent to aninstanceof theGeomBase prob-
lem is shown in figure2. The

���G�NKMLI���
construction of this

terrain is as follows. Sort the setof pointson eachof the
lines / � � , / �Z]

, and / ��² by x-coordinate.Let �T�+� and��³M´ bethemaximum andminimum x-coordinate. Between
any two horizontallyadjacent points

� .�} u / � and
� . � u / � with.'}¶µ·. � , createa horizontal line segmentwith endpoints� .g} S }¸ u / uX]¹� and

� . � [ }¸ u / ue]¹� . For all points
� . u / � , place

two verticesat
� . u /pº¶» u � � with ��µ¼»Tµ }� . Connect these

four points into structures called slits. The rest of the
construction is shown in figure2.

If we intersecta horizontal planewith this terrainat any
altitudebetween� and

]
, we have a number of horizontal

segments in the planewith a horizontal distancelessthan}½ betweenany adjacent pair. It hasbeenshown in [8] that
this horizontaldistanceis sufficiently small to ensurethata
line passesthroughonepair of segments on eachof / � � ,/ �¾]

, and/ �¼² , if andonly if threepointswerecollinearin
theoriginal instanceof theGeomBase problem. Thus,a line
passesthrough threeslits if andonly if threepoints in the
original GeomBase problem werecollinear. Oncewe have
computedall distanthorizon edges,we answer“yes” to the
GeomBase problem if andonly if anedgeadjacentto a slit
appears on the distanthorizon. This canbe donein

�������
timeandconcludesour reduction.

Although thisdemonstratestheproblemof determiningall
distanthorizon edgesis 3SUM hard, the reductionrequiresU ����� local maxima. It is still unknown if the problem is
3SUM hardwhenthe terrainhasa constantnumber of lo-
cal maxima. It is relatively straight forward to show that
thereexists a terrainof

t
local maxima with U ��tb��� dis-

tant horizon edgefragments. However, in the next section,
we demonstratethe problem of computing all distanthori-
zonedgefragmentstakes U ��� � � time even for terrains with
a singlelocalmaximum.

¿ � ! U �G� � ��À $hÁY6��nÂI$:( ! &Tj%$�� _ $)`¬a:(Q�#, !Qc 	Q?Ã?�m�,-���@	 ! �o�$��
,lq+$ !z¯ & c 6z¥Q�
	 c `T6 ! �@�
In thissection,wepresentaterrainÄ with asinglelocalmax-
imum and U ��� � � edgefragments. It follows immediately
from this example thatany algorithm to computeall distant
horizon edgefragmentswould take at least U ��� � � time. The
intersectionÄÆÅ of terrain Ä with a horizontal plane 1 �Ç|
givesa simply connectedregion. Thepoints on theconvex
hull of this simply connectedregion arethepoints thatsup-
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Figure2: A terraincreatedfrom an instanceof GeomBase.
Thesolidverticesin thediagramareatheight

]
. Thehollow

verticesareat height � .
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Figure3: Top down view of the terrain Ä with U �G� � � edge
fragments. Its intersectionÄ Å with a horizontal planeat an
altitude 1 �Ü� | � u�|�Ý�� is shown in grey andtheconvex hull
of theintersectionis shown asa thick blackline.

port ahorizontalvisualline in thisplane.Wecount thenum-
ber of edgefragmentsby counting the number of timesan
intersection point between1 �Þ|

andanedgeof Ä appears
or disappears from theconvex hull of ÄYÅ asthesweepplane1 �·|

is loweredthrough the terrainfrom highestto low-
estaltitude. Theseevents correspond to the startor endof
an edgefragment sincethe edgeeitherbegins or ceasesto
support a horizontal visualline at thesepoints.

In figure 3, the edgesthat causethe U ��� � � edgefrag-
mentshave vertices labelled ß �à , ß Ýà ,

v �á
, and

v Ýá
for allâ �Þã � ue]9u�²YäXäeä7��å and æ �Þã � ue]9u�²YäXäeä7��å . The altitudeof

every vertex labelled ß �à or
v �á

is
| �

andthealtitudeof ev-
ery vertex labelled ß Ýà or

v Ýá
is
|gÝ

with
|�Ý��ç| � [=�

. All
theverticeslabelledÚ areat analtitudelessthan

|�Ý
andthe
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