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Tiling Layouts with Dominoes

Mark Watsorf

Abstract

We explore the comgexity of tiling finite subsetsof the
plane,which we call layous, with a finite setof tiles. The
tiles areinspiredby Wangtiles andthe dominogamepiece.
Eachtile is compesedof a pair of faces.Eachfaceis colored
with oneof k£ possiblecolors. We wantto know if a given
layou is tileable by a given setof n dominaes. In atiling,

domiroesthattouchmustdosoatlike-coloeddomirp faces.
We provide anO(n) time algorithmfor tiling layoutsthatare
pathsor cycles We alsoshaw thatif thelayou is partially
tiled at the outsetof the prodem, then the tiling decision
prodemis NP-compete. We alsoshaw thatthe prodem re-
mainsNP-compete evenif thelayou is atree

1 Introduction

In a geanetrictiling problemwe wish to fill all or someof
the planewith non-ovedapping polygonscalledtiles. The
tiling prodems studiedhereinare motivated by recen re-
sults concening Wang tiles. Wangtiles are nonrotatate
unit squareghathave colorededges [5]. In atiling thatuses
Wangtiles, neighloring tiles musthave the samecolor on
adjacentedges. In a typical Wangtiling problem, we are
given a finite nunber of typesof tiles andan infinite num-
ber of eachtype, andwe are asled to tile somesubsetof
the plane. Berger shaved that decidingif the entire plane
canbetiled by a givensetof Wangtiles is undecicble[2].
Motivatedby a comectionbetweenNangtilings andselfas-
semblyin DNA computing, researchearhave begun to study
tiling proper infinite subsetof the plane[l, 3]. In [1], the
authas shaw thatthe problemof tiling aribbon, whichis an
infinite “path” in theplane,is undecidble. This resultis ex-
tendedn [3] to shaw thatthe prodem of tiling aribbon that
is a“cycle” is undecidble.

We studya variation of Wangtiles, which we call domi-
noesthatare2 x 1 rectangls thatarepartitioredinto 2 col-
oredfaces. Thusunlike Wangtiles, the facesare colored
ratherthantheedges Also unlike Wangtiles, we allow rota-
tion of thetilesandwe consideffinite setsof dominaes. Thus
althoudh our tiles have a comectionto Wangtiles, they are
essentiallya genealization of the commanly useddonino
gamepiece.
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Figure1l: (a) A setof domines D realizedas orthognal
rectamleswith two faces.(b) A layoutL. (c) Thegragh G ~.
(d) Therealizationof atiling 7 onthesetD.

2  Terminology

LetC = {c1, ca, ..., ¢ } beafinite setof k colors.A domiro
d is apair (cq1,cq2) Of colorsfrom C. We will referto the
currentsetof domiroesthatis uncer consideréion asD, and
we will referto thenumber of domnoesin D asn. We will
only consideffinite setsof dominoes.

Now we discusshow we can embeda domiro in the
integer plane. When embealding a domno in the plane,
we interpet a domno d = (cq1,¢42) @asa2 x 1 rectande
that is partitiored into exactly 2 squares. We call these
squaes facesand refer to themas f{ and fJ. The face
7 will be colored colar ¢4; (Figure1(a). We saythata
functiont : D — Z2 x Z2 is adominotiling function if =
hascertainpropertiesthatwe now explain. Firstly, 7 must
mapa dominoto a pair of horizontally or vertically aligned
points that are 1 unit apart. Furthermore, 7 must map
dominoes suchthat adjacentdomiro faceshave the same
color.  Finally, 7 must map domiroesto non-overlapping
locatiors. Thesepropertiesareformalizedbelow:

L.7(d) = (u,v) = |luv|| =1

2. 7(d;) = (u,v),7(dj) = (w,z), andfjuw|| = 1 =
Cd;1 = Cd;1

3.7(d;) = (u,v),7(d;) = (w,z), and|vz|| =1 = cq4,0 =
Cd;2

4L.ij7-(d,~) = (u,v) and7(d;) = (u,z) = d; = d;
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5. T(d,) = (u,v) andr(dj) = (’U),'l)) =d; = dj

where |luv|| is the Euclidean distance betweenwu and
v, andd,d;,d; € D. We user(d) to determinewhere
a domino d is located. If 7(d) = (u,v) then f will be
centeredht the point u, and f§ centerecht the poirnt v. We
noteherethat+ maybea partialfunction, in which casenot
all dominoesarepositioredontheplane.

A layou L is asubsedf Z?2 x 7?2 suchthatfor all (u,v) €
L, [lwv|| = 1, andfor all (u;,v;), (uj,v;) € L we have
u; # uj,v; andv; # uj,v;. In otherwords, L consistsof
pairsof unicque pointsfrom Z 2 thatareeitherhorizontally or
vertically aligned(Figure 1(b)). We will alsostipulatethat
|L| = n, i.e. the numker of domiroesis exactly the right
numter to cover the layout. Let u andv be two pointsthat
arecommnentsof someelementsof L. Thenwe sayu and
v areadjacent in L iff [|uv|| = 1. If two memtersl;,; € L
have adjaceih compments,theni; andi; are alsodeemed
adjacent. If 7 mapstwo donino facesto positiors thatare
adjacentn L, thenthosefacesaredeemedadjacentlf there
existsadomino tiling function 7 thatis surjectve on L for a
setof domirnes D thenwe saythat L is tileable by D and
we referto 7 asatiling of L usingD.

Sincewe areinterestedn the compuation of tilings, we
definethefollowing problens:

Definition 1 In the DOMINO TILI NG problem we are
givena setD of domiroesanda layout L andwe are asked
to computea tiling 7 of L if oneexists.

We also study a domirp tiling prodem where certain
domirpeshave alread beenpositiored on the layout. Thus
the layout is partially tiled with donminoes,andwe wish to
comgetethetiling.

Definition 2 In the PARTIAL DOMINO TILING prob-
lem, we are givena partial tiling function 7*, a setD of
domin@s,a layout L and we are asked to computea tiling
functionr sud thatfor all d € D sudthat7*(d) is defired,
we havethefollowing:
™(d) = (u,v) = 7(d) = (u,v)

IntheboththeDOMINO TILING probdemandthePAR-
TIAL DOMINO TIL ING prablem, mayor maynotexist.

In Section 3 we study the algoithmic aspects of
DOMINO TILING with respecto thetopdogy of layous.
We classifythetopolagy of alayou L by usinga graphthe-
oreticchamcterizatiorof L. We defineagragh GX = (V, E)
whosenodes andedgesaredefinedusingthe compamentsof
alayou L in thefollowing way (seeFigurel1(c)):

oV ={v|(v,u) € Lor(u,v) € L, for someu}
e £ = {(u,v) | w andv areadjacentn L}

We will use the gragh progerties of G to characterize

L. If G is apathor a cycle, for examge, thenwe alsosay
thatL is apathor acycle, respectiely.

We will alsouseagraph charactdrationof a setof domi-
noes. Using a set D of domiroes,we build an undrected
pseudgrag® whosenodescorrespad to colors andwhose
edges correspondto domiroes. Given a set of domiroes
D thatusethe colorsC = {c¢i,c¢s, ..., ¢k}, we definethe
domino graph GP = (V, E):

oV=C
e E = ((u,v) | (u,v) € D)

Thus each domno from D correspads to exactly one
edgein E, while eachcolor from C is represent by a
singlenocein V.

3 Tiling Paths and Cycles

In this Section,we focuson the DOMINO TILING prob
lem wherethe provided layout L is a pathor a cycle. The
following Lemmaprovidesthe motivation for our algorittm
for compuing tilings of layoutthatarepathsor cycles.

Lemmal A layou L, which is a path, is tileable by D iff
GP contdns an Eulertrail or circuit.

Proof. RecallthatanEulertrail (resp.circuit) of agragh G
is apath(resp.cycle)thatusesveryedgeof G exactlyonce.
(=) We defineagraphG = (Vg, Eg) usingr:

e Ve = {v | visafaceof adomnofrom D}
e Eg = {(u,v) | facesu andv areadjacehunderr}

The graph G will be isomorplic to the layou graph
GL sinceeachfacelies a point from a compmentof L, and
facesareonly adjacenhif they areoneunit apart.SincelL is
apath,G” is alsoa path,andhenceG is a path. Recallthat
G hasexactly oneedgefor eachdomino in D. If thefaces
that are at the endpants of the pathG are different colors
thenG describesa pathin GP. If they arethe samecolors
thenthey describea cycle in GP. Moreover, this pathor
cyclewill beEulelian sinceit usesevery ede (i.e. domno)
exadly once.

(<) Let X = (ey,eq,...,e,) beanEulertrail or circuit
from GP thatis givenby its edgesWe will useX to position
dominoesfrom D onto L, thuscomputing 7.

Now we describethe procedire for positionirg the domi-
noesof D onto L by using ¥. We begin by specifyirg
a membe of L thatis at an endmwint of the path G to
be NEXT. Then we perform the following procedurefor
i=1,2,..,n:

1. Placethedominothatcorrespndsto the edgee; at lo-
cation NEXT accordimg to e;. Now location NEXT is
deenedoccipied.

1A pseudograph is agraphthat allows both loopsandmultiple edges
betwee nodes.
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2. NEXT < thenext unoccypied memberof L thatis ad-
jacentto NEXT.

We areassuredhatadjacentdominaespositiored usingthis
procalurehavelike-coloedfacessinceconsecutie edgesn
¥ have acomnon endoint?. We arealsoguarateedthatall
domiroesfrom D areusedsinceX is Eulerianandedgesn
GP have aone-teonecorrespondene with the dominoesin
D. O

We caneasilyexterd this proof to dealwith layous thatare
cycles. The only difference is that NEXT is initially any
membe of L, andwe updateNEXT cyclically arourd the
cycle L. Thus we have thefollowing:

Lemma 2 A layout L, which is a cycle is tileable by D iff
GP contairs an Euler circuit.

It is well-known that Euler circuits and pathscanbe com-
putedonagraphG = (V, E) in O(|V| + |E|) time. Recall
thatnodesin G” correspad to colors, while edgescorre-
spondto donminoes.Furthemore,sinceevery dominois col-
oredwith atmost2 colors we have thatk € O(n). Thus we
have thefollowing:

Theorem3 DOMINO TILING canbesolvedn O(n) time
if L is a pathor acycle

4 Tiling Partially Tiled Layouts

In this Sectionwe shav that the decisionversionof PAR-
TIAL DOMINO TILING is NP-conplete.We usethefol-
lowing prodem in our proof, which was shavn to be NP-
comgetein [4]:

Definition 3 Inthe3,4-SAT problemwearegivenabodean
expressiong in CNF with exactly 3 variablesper clauseand
ead variableappears at most4 timesin ¢, andweare asked
to decidewhetherg is satisfiable

Theorem4 PARTIAL
complete

DOMINO TILING is NP-

Prodf. PARTIAL DOMINO TILING is in NP sincewe
can“guess”atiling, andin polynomial time we canverify
thatthetiling is valid.

We will reduce 3,4SAT to PARTIAL DOMINO
TILING . We will construt a layou L, a setof doninoes
D, anda partialtiling function 7* accordng to the bodean
expressiong suchthata total tiling function 7 will exist iff
¢ is satisfiable.

The colors we usefor the facesof domiroescomefrom
differentaspectf ¢. For eachvarialle v; we introducea
unigue color ¢,,. For eachclausew; we introdwce a unique
colore,,. We alsointroducea unigue color ¢, for eachnot

2Recal thattheseendpoirts, i.e. the verticesof GP, arethe colors from
C.
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Figure2: Left, a variablelayoutfor an unneyatedvariabe.
Right, avariablelayoutwith onenegatedoutpu.

opeatorthatappersin ¢. Finally, we have onecolor called
¢t thatrepresent$rue”, andanothercolorcalledc  thatrep-
resentsfalse”. Now we describehow L is constructedrom
a collectionof otherlayous thatcorrespad to different as-
pectsof ¢.

We will representvariaesthatarenevernegaedin ¢ by
constrieting alayou andaddingsomedominaesto D. The
layou thatrepresents&n unregatedvarialdle v; is showvn in
Figure 2. Four points from this layout have beenempta-
sized. We will referto thesepointsareterminalssincelay-
outsthatrepresentclausewill bepositioredatthesepoints.
A domino (¢,,, ¢y, ), Which we will refer to as a variable
domiro, hasbeenpositionedon this layout. The positionof
eachvariable donino will be reflectedin our partial tiling
function 7*. We referto the pottion of avariablelayoutthat
is above the variabledomirp asthe value zone while the
pottion below is calledthe reservoir For eachunnegated
varialle in ¢ we will alsoadda collection of five (¢, ¢t)
dominoesandfive (cy, c;) domiroesto D. Thesedomiroes
will be usedto “transmit” the truth value of a varialie to a
clause Wewill alsoaddtwo importart doninoesof theform
(¢4, ¢0;) @nd(cy, ¢y, ) to D. Thesedomirpeswill beusedto
“set” thetruthvalueof avariable

Negaedvariableswill behardledin avery similarfashion
to unnegatedvariabes. We simply insertnegation domiroes
nearthe terminal on the layou for an unngatedvarialle
(Figure 2). Thesedomirpeswill be of the form (cy,;, ¢y;).
The factthat suchnegation doninoesexist will bereflected
in 7*. For eachneggation domino we add two domiroes
(en;,ce) and(cp,,cr) to D.

We represeneachclausew; by exactly threelayous that
will be adjacentto the layoutsfor the varablesthat arein
the clausew;. The threelayoutsfor clausew; are shavn
in Figure 3. The emphasizegointsin Figure 3 are called
terminals Therearethreedomiroesof theform (c.;, cw;)
that have beenpositiored on theseclauselayouts. We will
referto thesedominesasclausedomin@s The positions
of clausedominceswill bereflectedin 7*. The portion of
the layout that is to the left of the clausedonino will be
referedto asthe reservoirof the clauselayout. Notice that
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Figure3: Thethreelayous thatrepresenta clause.

one of the clauselayous doesnot have a reseroir. Each
of theselayouts correspondgo exactly oneof the variables
thatis in clausew;. Eachof themwill be positiored sothat
their termind is adjacento oneof thefour terminalsin the
layou for the variablethey correspondwith. For this to be
accomfished, clauselayoutsmay needto be rotated. For
eachclausew;, we addthreedominoesof theform (c,,, , ¢t)
andtwo domiroesof theform (c.,, , ¢¢) to D. Figure4 shovs
avariable layou thathastwo clausdayoutsattachedo it.

@u-u@@u-u

u@@--u-u-u@

Figure4: Variabe v; appeas negaedin clausew; andun-
negaedin clausew;.

Now supposéhatthereexists sometiling function 7 that
is a solutionto PARTIAL DOMINO TILI NG for L, D,
andr* asdescribd abore. We will show thatif 7 existsthen
¢ is satisfiable.Specifically we will usea truth assignmen
of ¢ thatis implied by . First let us exanine the domi-
noesthat have beenpositionednext to variade dominoes.
Variabledominoesareonly adjacento two otherdomnoes
from D. Recallthat the variabledominofor v; is colored
¢y; - In our constretion of D, we placedexactly two domi-
noesthathave faceswith colore,,. Thesetwo domiroesare
of theform (c¢, ¢y;) and(cy, ¢y;). Thuswe areguarateed
thatthesetwo domirpesareadjacenhto the varieble domno
for v;. Wewill assigratruthvalueto variablev; in ¢ accord-
ing to which of thesetwo dominasgetsplacedin the value
zoneof the variable layoutfor v;: if (e, c¢,,;) is positioned
in the valuezonethenwv; = true, andv; = falseothewise.
Now considemegation domiroes. Theit* negationdormnino
is only adjacentto two otherdomiroes, and due our con-
struction thesetwo dominaeswill be(cy;, ;) and(cp,;, cy).
Now considerclausedomirpes.Dueto our constrution, all
domiroeswith facescoloredce,,, mustbe positiored next to
acorrespnding clausedomino. This ensureghatall clause
layout reserwirs getfilled by either (cy;,ct) O (¢w;,cy)
domirpes. Also, sincethereare only two dominces of the

form (cw,;,cy), we are guarateedthat at leastone layout
commner for eachclausewill have afaceof colorc,; onits
termiral. This correspond to eachclausefrom ¢ beingsat-
isfied. We still mustshaw thatif aclausdayou hasac, face
onits terminalthenthevariableassociatevith thatterminal
haseitherbeensetof true, or it hasbeensetto falseandit
apparsnegaedin the clause.First considerthe casewhere
avariable v; appeas unregatedin clausew; andsuppose
clauselayou for w; hasa ¢; faceontheterminalassociated
with v;. Sincethis terminalis adjacento a terminalin the
v;'s vaniable layou, all the positionsin v;'s valuezonewiill
be occyied by domnoeswith ¢; faces.The sameargument
works for clauseterminalsthatarecoveredby ¢ ; faces.Thus
for unregatedvariablesjruthvaluesareproperly propagate
to clauses.We caneasily exterd this argumentfor negatedl
variables by noticing that negaion domiroessimply “flip”
thetruthvalue. Thus we have thatevery clauseis satisfied

Now suppostehat¢ is satisfiable We will computeatiling
function r from a satisfyingtruth assignmenof ¢.

If a varialde v; is setto true then we position domiro
(co;,ct) in v;'s varialde layou value zonealongwith five
(¢4, ¢¢) dominaes. We alsoplace(c,,, cs) alongwith five
(cf,cr) domineesin v;’s reserwir. Placingthefive (¢, ¢;)
dominoesin v;'s valuezonewill ensurethatall unnegated
termirals corfrespondo clauseghathave a (¢, , ¢;) domiro
at their termiral. If a variale hasa negatedterminal,then
thisforcesthe(c,,, ¢;) to beadjacento thevariate layout's
termirel, whichin turnforcesthe (¢,,, c;) domiro to bead-
jacentwith the terminalfor the correspading clause. This
causeshe clauseto have a (c,,;, ¢y) domirp atits termiral.
Sinceg is satisfiablethis canonly occu atat mosttwo vari-
ablelayous. Recallthatwe've only addedwo domiroesof
theform (c., , ¢y) for eachclause Thisimpliesthatvariatie
layous thatcorrespadto avariablethathasbeensetto true
canbetiled.

If thevariable v; is false,we dothe exactopposite: we fill
thevaluezonewith (c,,;, cy) andfive (cy, ¢;) domiroes,and
the reseroir with (c,,, c¢;) andfive (¢, ¢;) dominces. We
canargue thatsuchlayoutscanbetiled by usingthereverse
of the agumentgivenabove. The (¢, cy) domineesin the
value zore will force unregatedterminalsto be associated
with clausesthat have a (c,;,¢y) at their terminal. Since
¢ is satisfiableat mosttwo variaeswill havethis propety,
whichcorrespondso thefactthattheirareonly two (c.,, , ¢f)
dominoesperclause. O

Thelayou L constructedn the proof of Theoem4 is dis-

conrectedin thesensehatG? is disconmected.We caneas-
ily augment L sothatit is conrected. We canachieve this

by “daisy chainirg” the variable layous with fixed position
dominoes:thevariabe layoutfor v; is comectedo thevari-

ablelayou for v;11 by a paththat contairs fixed position
dominoes.lt is easilyseenthatthis nev connetedlayout is

alsoatreein the sensethat G is a tree. Thus we have the
following:
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Cordllary 5 PARTIAL DOMINO TILING is NP-
completeevenif L isatree

5 Conclusions and Future Work

We've showvn that dominotilings of layous that are either
pathsor cyclescanbe comptedin O(n + k) time, where
n is the number of dominaesandk is the number of colors
on the domiro faces. We've alsoshavn thatif alayou is
partially tiled at the outsetof the probdem, thenthe problem
is NP-compete,evenif thelayou is atree.

Many questionsregarding domirp tilings remain open.
We are interestedin the time compgexity of DOMINO
TILING whereL is atreeor agraph Also, we have only
consideed dominotiling prodemswheren = |L|. Many
interestingproblans arisewhenwe considerso-calledim-
perfecttilings wheren > |L|. In this situation,we wish to
find subset®f D thatcantile L. It would alsobeinteresting
to explore the similarities and differencesbetweendomino
tilings andWangtilings.
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