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Approximating Contact-Area of Supports in Layered
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Abstract

This paper consides the prodem of appoximating the
contactareafor noncorvex protaypes built via Layered
Manufacturing. Specifically the pape propsesa set of
heuristicdor choasingcandidateuild directiors alongwith
acriterionto testthequality of eachheuistic. Thepaperalso
presentefficientalgorithns thatcompue appoximatelythe
amount of contactareafor a given build direction. Experi-
mentalresultsonreal-world mocklsprovide acomparisonof
theproposedheuristics.

1 Introduction

Layered Manufactuing (LM) is a fast-gowing technolay
that produceshigh-quality pratotypeswith addedcolor in a
matterof houis andat low cost. Briefly, LM works asfol-
lows: The digital descriptim of the prototype is oriented
suitablyandslicedinto horizantal 2D layers,which arethen
built in successiom theverticaldirectian. Ideallythe proto-
typeis orientedsothatit is self-suppating during the build
phase.However, real-word objectsusuallydo not admita
self-suprting orientdion, andtherefae, additioral struc-
turescalledsupports arecreatedo prop up certainportiors
of theprotaype;theseareremovedin post-gocessing.
Suppot requrementsaremeasurd by thevolumeof sup-
portstructureandtheextentto which suppots “stick” to the
protaype (the cortact-area)Both depenl ontheoriertation
choserfor thepratotypeandmustbekeptsmallto ensurean
efficientbuild. Thisprodemhasreceivedconsideableatten-
tion (see[1, 3, 4,9, 13,11, 16]). Unfortunately few results
are available for noncorvex polyhedra. Majhi et al. [12]
give suppot optimizatian algoithms for non-convex poly-
gonsin the caseof 2D Stereolithogaphy An exact algo-
rithm to minimize contactareais presetedin [15], but its
high runring time(x O(n®)) preclugsits usein practice.
Allen andDutta[2] give a heuistic to appoximatethe mini-
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mumecortact-aredor non-@rvex polyhedrabut provide no
analysis of the quality of the approximatian.

In this paperwe provide a suite of efficient andpractical
heuistics for appraimating support cortact-areafor non
convex mockls andestablisha ratio testthat providesanin-
direct upperbound on the quality of the appioximation of
ary heuristic.Our resultsarebasedn ray-shooting cornvex
hulls, bodeanopegationson polygons,sphericalalgoithms
etc.,andusethe CGAL andLEDA [5, 10| librariesfor im-
plemenation. Finally, we presentanextensive setof expei-
mentalresultson real-world STL mocels. Detailsomittedin
this highly abbeviatedpaper(due to spacdimitations) may
befoundin [8].

2 Approximation bound

In whatfollows we denoteby P the polyhedronof interest,
by n the number of facets(triandes) in P, andby d the
build direction Eachfacet,f, of P hasassociatedvith it an
outward unitvecta dendedbyn ;. Facetf is classifiedw.r.t.
the given build directiond, asfront, bad, or parallel if the
anglebetweerd andn is lessthan,grederthan,or equalto
90°, respectrely. Thesuppat contactareafor P is thetotal
surfaceareaof P thatis in contat¢ with suppots. Notethat
for a geneal polyhedron while backfacetsare complaely
in contactwith suppots, front and parallel facetsmay be
only partially in contact—itis this latter aspectof suppat
structuesthat makesthe suppat optimizationproblemthat
we considersochallengng.

Ideally, we would like to find a directiond* that mini-
mizesthe contact-aga of P. Unfortunately even a small
charge in the build oriertation canresultin a significantly
differentfootprint of the suppats, whichmalesit difficult to
designa practicaloptimd algorithm. Therebre,an efficient
heuistic thatprovidessomeguaanteeaboutthequality of its
appoximatian canbe quite usefulin practice.We develop a
quality measurédelow.

Let CA(d) dende the contact-agaof P for direction d
andlet BFA(d) betheareaof all backfacetswith respect
tod. Letd be the direction computed by a heuistic, and
letd’ bethediredion thatminimizestheareaof backfacets.
SinceBFA(d*) < CA(d*) andBFA(d') < BFA(d*)
we have,

CA(Q) CA(d) CA(d)
CA(d*) = BFA(d*) = BFA(d')
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Givenary candidée direction d, we canusethe ratio test
to obtainan estimateof how closethe contact-aeafor d is
to the minimum conta¢-area. Notice that BFA(d') needs
to be computedonly once,sotheratio testdeperls mainly
on the efficiency of computing the contactareafor a given
direction whichwe describdn Section3.

3 Contact-area on front facets

Exact algorithm: W.l.o.g. assumehat P restson the zy-
planeandthatthe build directiond coinddeswith z+. Let
f beafixedfrontfacetandlet b beary backfacet. Theinter
sectionof their prgectionson the zy-planeyields a convex
polygon, C. If thepre-imagesC; andCy, of C on f andb,
respectiely, aresuchthatCy is above C in directiond, then
(' isin contactwith suppats. Thusthefootprint of suppats
onthefrontfacetf is theunion of thepre-imagesC', for all
backfacetsh. The comgexity of the union of the polygons
Cj onasinglefrontfacetcanbe®(n?). Thetimeto compue
theunionis O(n? log n) in theworstcasefor ary front facet
[6], henceO(n?logn) overdl. The storagerequiramentis
O(n?); sincethe algorithmworks on a facet-byfacetbasis,
thespacecanbereused.

A theoreticallyfasteroutpu-sensitve algoithm with run-
ningtime O(nlog? n + V' logn), whereV is thecompexity
of the decanposition is givenin [17]. Unfortunately both
algorithms areextremdy sensitve to degererateinput con-
figuratins, andtherebre, reliableimplemenationsrequire
the use of exact arithmetic. However, our experiments
and[17] indicatethatthe useof exactarithmic introduces
consideable overheadon the rumning time (appoximately
4000seconddor polyhedraof 2000facetsand400second
for polyhedraof 150facetsyespectrely). Therefore,we use
anexad algoiithm merelyfor a onetime verificationof the
simpleheuristicbelow, whichis pradical for realdatasets.

Heuristic. Let Hy (resp. My) derote the set of rays,
originating at points on a given front facet, f, in direction

d that hit anotter facetof P (resp. missall facetsof P).

Thenthe areaof f thatis in cortact with supprts canbe

apprimatedas (|Hy|/(|Hy| + |My|)) = area(f). As the
density of the samplepoirts is increased,the accuacy of

theappraimationimproves. The samplepoirts areselected
through a subdvision process. Eachfacetis subdvided

progessvely into trianguar patclesandthe centrads of the

patchesare selectedas samplepoints. Next eachpatchis

subdvided into two trianglesandthe patclesareprocessed
in a breadthfirst searchfashionto ensuresthat all facets
aresubdiidedto the samedepth. The algorithmtermirates
after a preddined nunber of iteratiors or whenthe change
in contat-area betweensuccessie iteratiors changs by

lessthan1% (eachiterationprocesseswice asmary patches
asthe previous one) At iterations thereare2? x n patches
andfor eachpatchthe ray shootingtakesO(n) time. For d

iterations therunningtimeis O (27 x n?).
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Dueto the slow speedof the exactalgorithmwe rancom-
parisontestson decimatedversions (2000 facets)of real-
world STL mockls (seeTable 1). (However, the final ex-
perimentsin Table 1 were doneon original mockls.) The
heuistic providednearlythe sameanswerasthe exactalgo-
rithm, but in a fractionof thetime. For a decimate versin
of t ri ad theheuristiccorverged to lessthan1% chang in
contat-areain 1 secondandcomputedcontad-areaof 0.32
while the exad algorithm conputed0.33 in 3888 seconds;
for t op_case the contat-areacomputed by the heuristic
was10494.5in 1 secondand10268.1in 1152 seconddy
the exactalgorithm. All expeimentsweredore on a Sun-
Blade 100 machire with 512 MB of main memoryand a
500 MHz processor Prograns were written in C++ using
CGAL andLEDA [5, 10); Decimata™ [7] wasusedto dec-
imatethemodels.

A similar appr@ach canbe usedto compute contact-aga
for parallelfacets.

4 Minimizing back facet area

We map eachfacet, f, to a point on $2 (the unit-sghere)
corresponéhg tony. LetCy bethe setof pointson S? that
areatdistancer/2 fromny, i.e. C; is agred circle on §2.
(Several facetsof P cancorrespondo C;.) Facetf will be
a backfacet,andtherefae require suppats, if andonly if d
belorgs to the openhemisplerewith pole —n ;. Let A be
the arrargementof gred circlescorrespondig to the facets
of P.

Lemmal Thebuild directiond’ minimizingthe bad facet
areacorrespondgo a vertexin A.

Proof. Letc beacellin 4. Theboundaryof ¢ corresponds
to front and/orbackfacetsbecomiry pardlel facets.Thete-
fore,thesetof backfacetscorresponéhg to ary poirt onthe
bowndaryof ¢ is eitherthesameasor is a propersubsebf the
setof backfacetscorresponthg to ary poirt in the interior
of ¢. Thus, the backfacetareacanrot increase.Therebre,
BF A(e) < BF A(c) for ary edgee onthebourdaryof c.
Similarly, let e be an edgein 4 andlet » be oneof the
vetticesin A thatis adjacento e alongthe supprting great
circle C, of e. Thevertex u represets a transitionalonge
ontoagred circle otherthanC.. Thus,afront and/a aback
facetbecones parallel. As before, BFA(u) < BFA(e).
This shawvsthatit is sufiicientto examine only the directians
corresponéhg to theverticesin A. O

The algorithm: Lemma 1 immediatelysuggestsan al-
gorithm for finding d’. We first compute the arrangment
A of greatcircleson the unit sphee, pick a vertex u in A,
andinitialize the back facetareaterm to the total areaof
the back facetsdeterminé by the direction correspndirg
to u. Next, we walk alongthe arrargemen by visiting ad-
jacentvertices. During the transitionfrom vertex u to ver
tex v, let ABF A(u) be the areaof the pardlel facetsat
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u thatbecomebackfacetsat v, andlet ABF A(v) be area
of the parallelfacetsat v that were backfacetsat u. Then
BFA(d,) = BFA(d,) + ABFA(u) — ABFA(v). Fi-

nally, the algorithm repots the direction correspondig to

thevertex for whichthe backfacetareais minimized

Computirg the arrargemen takesO(n2) time andO(n?)
space. At eachvettex the processingime is proportioral
to its degree, and therefae, the overall time for visiting
the verticesis also O(n?). The spaceusagecan be im-
provedto O(n) atthe expenseof increasedunnirg time to
O(n?logn). Themainideais to focuson only a portion of
A by walking alongarc edgesbelorging to the samegreat
circle. Givenagreatcircle,C ¢, we corrputeits intersectios
with all the other greatcircles and sort the verticesof in-
tersectionin their circularorder alongC¢. Next we pick an
arbitray vertex andinitialize the backfacetareaterm. Fi-
nally, we visit all the vetticesalongC; andupdatethe back
facetareaterm. The optimal directionis identified afterall
greatcircleshave beenprocessed.

Therunnng time pergreatcircleis domindedby thetime
to sortO(n) verticesof intersectim in time O(n logn). The
initializationtime is O(n) andthe walk alonga greatcircle
spendgervertex time proportioral to its degree,or O(n) in
total. Over all greatcirclesthe runnirg timeis O(n?logn).
Sinceonly apottion of A is computed,thespaceas O(n) and
this canbere-used

5 Approximating contact-area

We presenseverd heuristicsfor chaosinga canddatebuild
directionthatapprximatesthe optimal contact-arearequre-
ments. The quality of eachheuristicis measuredn terms
of the ratio CA(d)/BFA(d'), which is an upper bound
on CA(d)/CA(d*), asseenin Section2. We have imple-
mentedandtestedhefollowing choicesfor build direction

min BFA: Direction that minimizesthe backfacetarea.
Sincethe overall contactareaincludes the areaof the back
facetsjt maybe adwantageosito chosseadirectionthatre-
sultsin low cortact-areacontritution from the backfacets.

max PFA: Direction that maximzesthe areaof parallel
facets.Theratioraleis thatparallelfacetsdo notthemseles
requile suppats, andtherefae, by maximizingtheirareathe
numter of suppaet structurecoud bereducedwhich could
leadto reducecamount of contact-area.

max PFC: Directionthatmaximizesthe countof parallel
facets. This is an alternatve to the previous heuristic that
maximizes the numbe of facetsthatwill not requre direct
suppats, which could leadto a rediction in suppat struc-
tures.

PC: Direction that correspondsto the principal compm-
nentsof the object(conputedusingMATLAB ™ [14]). In-
tuitively, this heuristicbuilds the objectalongone of three
mutually perpemicular axesthat capturethe relative shape
of theobject.

Flat: Directionthatis oppositeto the outward unit-normal
of afacetof themodel. It is oftendesirableto build the part
suchthatit restson oneof its facets. In this casethe facet
mustbe cortainedin the boundaryof the corvex hull of the
mockl. We selectthefacetonthe convex hull which contains
facetdromtheorigind mode thathave thelargesttotal area
anduseasthebuild directio its outward unit-normal.

Random: Directionchoseratrancm. This heuistic was
included for compaison purposes. We chosea setof one
hurdredandtwentyrandan directiors andcomputedtheav-
erageof the contat-areaover all of thesedirectiors, which
wasthenusedto compute the contactarearatio. (Sincethe
denaninatorin calculatingtheratiosis fixed this is equiva
lentto takingthe average of theratiosover all directins.)

Tablelillustratesthemocelsusedfor ourexpelimentand
summaizestheresults.For eachmodé thetableshows the
contat-arearatiocompuedfor eachheuristicandcompares
the ratio realizedby the bestheuristicwith the ratio real-
izedby therandm heuristic. As seenin the columnnamel
“comp’, savingsrangingfrom 9% to 83% areachiezed on
real-world (nondecimateyl models. Note that eventhoudch
we arecomgaring ratiosthis is equialent to conparingthe
contat-areashemseles,sincethedenonmnatorsfor bothra-
tios arethe same namelythe minimumbackfacetarea.
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