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This paper considers the problem of approximating the
contact-area for non-convex prototypes built via Layered
Manufacturing. Specifically, the paper proposesa set of
heuristicsfor choosingcandidatebuild directionsalongwith
acriterionto testthequalityof eachheuristic. Thepaperalso
presentsefficientalgorithmsthatcomputeapproximatelythe
amount of contact-areafor a given build direction. Experi-
mentalresultsonreal-world modelsprovideacomparisonof
theproposedheuristics.
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Layered Manufacturing (LM) is a fast-growing technology
thatproduceshigh-quality prototypeswith addedcolor in a
matterof hours andat low cost. Briefly, LM works asfol-
lows: The digital description of the prototype is oriented
suitablyandslicedinto horizontal 2D layers,whicharethen
built in successionin theverticaldirection. Ideallytheproto-
typeis orientedso that it is self-supporting during thebuild
phase.However, real-world objectsusuallydo not admit a
self-supporting orientation, and therefore, additional struc-
turescalledsupports arecreatedto propup certainportions
of theprototype;theseareremovedin post-processing.

Support requirementsaremeasured by thevolumeof sup-
portstructuresandtheextentto whichsupports“stick” to the
prototype(thecontact-area).Both depend on theorientation
chosenfor theprototypeandmustbekeptsmallto ensurean
efficientbuild. Thisproblemhasreceivedconsiderableatten-
tion (see[1, 3, 4, 9, 13,11, 16]). Unfortunately, few results
are available for non-convex polyhedra. Majhi et al. [12]
give support optimization algorithms for non-convex poly-
gonsin the caseof 2D Stereolithography. An exact algo-
rithm to minimize contact-areais presented in [15], but its
high running time(!#"%$'&)(+* ) precludes its usein practice.
Allen andDutta[2] giveaheuristic to approximatethemini-
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mumcontact-areafor non-convex polyhedra,but provide no
analysisof thequalityof theapproximation.

In this paperwe provide a suiteof efficient andpractical
heuristics for approximating support contact-areafor non-
convex modelsandestablisha ratio testthatprovidesanin-
direct upperbound on the quality of the approximationof
any heuristic.Our resultsarebasedon ray-shooting, convex
hulls, booleanoperationson polygons,sphericalalgorithms
etc.,andusetheCGAL andLEDA [5, 10] librariesfor im-
plementation.Finally, we presentanextensive setof experi-
mentalresultsonreal-world STL models.Detailsomittedin
this highly abbreviatedpaper(due to spacelimitations)may
befound in [8].
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In what follows we denoteby < thepolyhedronof interest,
by & the number of facets(triangles) in < , and by = the
build direction. Eachfacet,> , of < hasassociatedwith it an
outward unit vector denotedby ?A@ . Facet> is classifiedw.r.t.
thegiven build direction = , asfront, back, or parallel if the
anglebetween= and ? @ is lessthan,greater than,or equaltoBDC�E

, respectively. Thesupport contact-areafor < is thetotal
surfaceareaof < that is in contact with supports. Notethat
for a general polyhedron, while backfacetsarecompletely
in contactwith supports, front and parallel facetsmay be
only partially in contact—itis this latter aspectof support
structuresthatmakesthesupport optimizationproblemthat
weconsidersochallenging.

Ideally, we would like to find a direction = �
that mini-

mizesthe contact-area of < . Unfortunately, even a small
change in the build orientation canresult in a significantly
differentfootprint of thesupports,whichmakesit difficult to
designa practicaloptimal algorithm. Therefore,anefficient
heuristic thatprovidessomeguaranteeaboutthequalityof its
approximation canbequiteusefulin practice.We develop a
qualitymeasurebelow.

Let FHGI$J=K* denote the contact-areaof < for direction =
andlet LNMOGI$J=P* be theareaof all backfacetswith respect
to = . Let Q= be the directioncomputedby a heuristic, and
let =KR bethedirection thatminimizestheareaof backfacets.
Since LNMOGI$S= � *UTVFHGI$S= � * and LIMOGN$S=PR�*WTXLIMOGN$S= � *
wehave,

FHGI$ Q=P*
FHGI$J= � * T FHGN$ Q=Y*

LIMOGN$S= � * T FHGI$ Q=K*
LIMOGN$S= R *
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GivenZ any candidate direction Q= , we canusetheratio test
to obtainanestimateof how closethecontact-areafor Q= is
to the minimum contact-area. Notice that LIMOGI$J=[R\* needs
to be computedonly once,so the ratio testdepends mainly
on the efficiency of computing the contact-areafor a given
direction, whichwe describein Section3.
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Exact algorithm: W.l.o.g. assumethat < restson the h;i -
planeandthat thebuild direction = coincideswith j�k . Let
> beafixedfront facetandlet l beany backfacet.Theinter-
sectionof their projectionson the h;i -planeyieldsa convex
polygon, F . If thepre-images,F @ and Fnm , of F on > and l ,
respectively, aresuchthat F3m is above F @ in direction= , then
F @ is in contactwith supports. Thusthefootprint of supports
onthefront facet > is theunion of thepre-imagesFom , for all
backfacetsl . Thecomplexity of theunion of thepolygons
F m onasinglefront facetcanbe po$'&rqs* . Thetimetocompute
theunion is "%$'&Kqut\vDwr&x* in theworstcasefor any front facet
[6], hence"%$S&Kyzt\vDwr&x* overall. The storagerequirement is
"%$'&zq+* ; sincethealgorithmworkson a facet-by-facetbasis,
thespacecanbereused.

A theoreticallyfasteroutput-sensitivealgorithm with run-
ningtime "%$'&Ht\vDw q &Ik|{}t~v6w)&x* , where{ is thecomplexity
of the decomposition, is given in [17]. Unfortunately, both
algorithms areextremely sensitive to degenerateinput con-
figurations, andtherefore, reliableimplementationsrequire
the use of exact arithmetic. However, our experiments
and[17] indicatethat theuseof exactarithmetic introduces
considerableoverheadon the running time (approximately
4000secondsfor polyhedraof 2000facetsand400seconds
for polyhedraof 150facets,respectively). Therefore,weuse
anexact algorithm merelyfor a one-time verificationof the
simpleheuristicbelow, which is practical for realdatasets.

Heuristic: Let � @ (resp. � @ ) denote the set of rays,
originating at pointson a given front facet, > , in direction
= that hit another facetof < (resp. miss all facetsof < ).
Then the areaof > that is in contact with supports canbe
approximatedas $�� �e@;� �	$b� ��@��Dk�� ��@;� *�*r�����+�+��$J>u* . As the
densityof the samplepoints is increased,the accuracy of
theapproximationimproves.Thesamplepoints areselected
through a subdivision process. Each facet is subdivided
progressively into triangular patchesandthecentroidsof the
patchesare selectedas samplepoints. Next eachpatchis
subdivided into two trianglesandthepatchesareprocessed
in a breadth-first searchfashionto ensuresthat all facets
aresubdividedto thesamedepth.Thealgorithmterminates
after a predefined number of iterations or whenthe change
in contact-area betweensuccessive iterations changes by
lessthan ��� (eachiterationprocessestwiceasmany patches
astheprevious one). At iteration � thereare ���z�n& patches
andfor eachpatchtheray shootingtakes "%$'&x* time. For �
iterations,therunning time is "%$J�4����&zqs* .

Dueto theslow speedof theexactalgorithmwe rancom-
parisontestson decimatedversions (2000 facets)of real-
world STL models (seeTable 1). (However, the final ex-
perimentsin Table 1 weredoneon original models.) The
heuristic providednearlythesameanswerastheexactalgo-
rithm, but in a fractionof thetime. For a decimated version
of triad theheuristicconverged to lessthan1% change in
contact-areain 1 secondandcomputedcontact-areaof 0.32,
while the exact algorithm computed0.33 in 3888seconds;
for top case the contact-areacomputed by the heuristic
was10494.5in 1 second,and10268.1in 11592 secondsby
the exact algorithm. All experimentsweredone on a Sun-
Blade 100 machine with 512 MB of main memoryand a
500 MHz processor. Programs werewritten in C++ using
CGAL andLEDA [5, 10]; DecimatorTM [7] wasusedto dec-
imatethemodels.

A similar approachcanbe usedto compute contact-area
for parallelfacets.
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We map eachfacet, > , to a point on �3q (the unit-sphere)
corresponding to ?�@ . Let �;@ bethesetof pointson �Aq that
areat distance���D� from ?r@ , i.e. �4@ is a great circle on �nq .
(Several facetsof < cancorrespondto �P@ .) Facet > will be
a backfacet,andtherefore require supports, if andonly if =
belongs to the openhemispherewith pole �[?[@ . Let   be
thearrangementof great circlescorresponding to the facets
of < .

Lemma 1 Thebuild direction = R minimizingtheback facet
areacorrespondsto a vertex in   .

Proof. Let ¡ bea cell in   . Theboundaryof ¡ corresponds
to front and/orbackfacetsbecoming parallel facets.There-
fore, thesetof backfacetscorresponding to any point onthe
boundaryof ¡ is eitherthesameasor is apropersubsetof the
setof backfacetscorresponding to any point in the interior
of ¡ . Thus, the backfacetareacannot increase.Therefore,
LIMOGN$S��*�T¢LIMOGI$J¡£* for any edge� on theboundaryof ¡ .

Similarly, let � be an edgein   andlet ¤ be oneof the
verticesin   that is adjacentto � alongthesupporting great
circle �;¥ of � . The vertex ¤ represents a transitionalong �
ontoa great circleotherthan ��¥ . Thus,a front and/or a back
facetbecomes parallel. As before, LIMOGN$'¤u*¦T§LIMOGN$S��* .
Thisshowsthatit is sufficient to examineonly thedirections
corresponding to theverticesin   . ¨

The algorithm: Lemma 1 immediatelysuggestsan al-
gorithm for finding =�R . We first compute the arrangement
  of greatcircleson the unit sphere, pick a vertex ¤ in   ,
and initialize the back facetareaterm to the total areaof
the back facetsdetermined by the directioncorresponding
to ¤ . Next, we walk alongthe arrangement by visiting ad-
jacentvertices. During the transitionfrom vertex ¤ to ver-
tex © , let ªoLIMOGN$'¤u* be the areaof the parallel facetsat
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¤ that
«

becomebackfacetsat © , andlet ªoLIMOGN$'©	* be area
of the parallel facetsat © that werebackfacetsat ¤ . Then
LIMOGN$S=P¬�*e­®LNMOGI$S=P¯	*�k°ªoLNMOGI$'¤u*A�±ªNLNMOGI$S©`* . Fi-
nally, the algorithm reports the direction corresponding to
thevertex for whichthebackfacetareais minimized.

Computing thearrangement takes "%$'&�q²* time and "%$'&�q+*
space. At eachvertex the processingtime is proportional
to its degree, and therefore, the overall time for visiting
the verticesis also "%$S&xq+* . The spaceusagecan be im-
provedto "%$'&x* at theexpenseof increasedrunning time to
"%$'&zqxt~v6w)&x* . Themainideais to focuson only a portion of
  by walking alongarc edgesbelonging to the samegreat
circle. Givena greatcircle, � @ , we computeits intersections
with all the othergreatcircles andsort the verticesof in-
tersectionin their circularorder along �K@ . Next we pick an
arbitrary vertex andinitialize the backfacetareaterm. Fi-
nally, we visit all theverticesalong �z@ andupdatetheback
facetareaterm. Theoptimal directionis identifiedafterall
greatcircleshavebeenprocessed.

Therunning timepergreatcircle is dominatedby thetime
to sort "%$'&x* verticesof intersection in time "%$'&Ht\vDw�&x* . The
initialization time is "%$'&x* andthewalk alonga greatcircle
spendspervertex time proportional to its degree,or "%$'&x* in
total. Over all greatcirclestherunning time is "%$'&�qut\vDw)&x* .
Sinceonlyaportion of   is computed,thespaceis "%$'&x* and
this canbere-used.
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We presentseveral heuristicsfor choosinga candidatebuild
directionthatapproximatestheoptimal contact-arearequire-
ments. The quality of eachheuristicis measuredin terms
of the ratio FHGN$�Q=P*b��LNMOGI$S=PR´* , which is an upper bound
on FHGI$�Q=P*b��FHGN$S= � * , asseenin Section2. We have imple-
mentedandtestedthefollowing choicesfor build direction:

min BFA: Direction that minimizesthe backfacetarea.
Sincethe overall contact-areaincludes the areaof the back
facets,it maybeadvantageous to choosea directionthatre-
sultsin low contact-areacontribution from thebackfacets.

max PFA: Direction that maximizes the areaof parallel
facets.Therationaleis thatparallelfacetsdonot themselves
requiresupports,andtherefore,by maximizingtheirareathe
number of support structurescould bereduced, whichcould
leadto reducedamount of contact-area.

max PFC: Directionthatmaximizesthecountof parallel
facets. This is an alternative to the previous heuristic that
maximizes the number of facetsthat will not require direct
supports, which could leadto a reduction in support struc-
tures.

PC: Direction that correspondsto the principal compo-
nentsof theobject(computedusingMATLAB TM [14]). In-
tuitively, this heuristicbuilds the objectalongoneof three
mutually perpendicular axesthat capturethe relative shape
of theobject.

Flat: Directionthatis oppositeto theoutward unit-normal
of a facetof themodel.It is oftendesirableto build thepart
suchthat it restson oneof its facets. In this casethe facet
mustbecontainedin theboundaryof theconvex hull of the
model. Weselectthefacetontheconvex hull whichcontains
facetsfrom theoriginal model thathavethelargesttotalarea
anduseasthebuild direction its outward unit-normal.

Random: Directionchosenat random. Thisheuristic was
included for comparison purposes. We chosea setof one
hundredandtwentyrandom directionsandcomputedtheav-
erageof thecontact-areaover all of thesedirections, which
wasthenusedto compute thecontact-arearatio. (Sincethe
denominatorin calculatingtheratiosis fixed, this is equiva-
lent to takingtheaverage of theratiosover all directions.)

Table1 illustratesthemodelsusedfor ourexperimentand
summarizestheresults.For eachmodel thetableshows the
contact-arearatiocomputedfor eachheuristicandcompares
the ratio realizedby the bestheuristicwith the ratio real-
izedby therandom heuristic. As seenin thecolumnnamed
“comp.”, savings rangingfrom 9% to 83% areachieved on
real-world (non-decimated) models. Note that even though
we arecomparingratiosthis is equivalent to comparingthe
contact-areasthemselves,sincethedenominatorsfor bothra-
tiosarethesame,namelytheminimumbackfacetarea.

µ �A�6� � �6¶3· d�� � d	7�d � 


Theresearchof II, RJ,andEJwassupportedin partby NSF
grant CCR–9712226. The researchof II andRJ was also
sponsored,in part,by theArmy HPCResearchCenterunder
theauspicesof theDepartmentof theArmy, Army Research
Laboratory; thecontentdoesnotnecessarilyreflecttheposi-
tion or thepolicy of thegovernment, andnoofficial endorse-
mentshouldbeinferred. Theresearchof MS wassupported
by NSERC.Theauthors thankStratasys, Inc. for the test
data.

¸Kd f d���d � ��d6�
[1] P. Agarwal andP. Desikan.Approximationalgorithmsfor lay-

eredmanufacturing. In Proc.11thAnnualACM-SIAMSODA,
pages528–537,2000.

[2] S. Allen and D. Dutta. Determination and evaluation
of support structuresin layered manufacturing. J. De-
sign&Manufacturing, 5:153–162,1995.

[3] B. Asberg,G.Blanco,P. Bose,J.Garcia-Lopez,M. Overmars,
G.Toussaint,G. Wilfong, andB. Zhu. Feasibilityof designin
stereolithography. Algorithmica, 19:61–83, 1997.

[4] P. Bose. Geometricand computational aspectsof manufac-
turing processes. PhD thesis,Schoolof Computer Science,
McGill Univ., 1995.

[5] ComputationalGeometryAlgorithmsLibrary.
http://www.cgal.org.

[6] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. ComputationalGeometry:Algorithmsand
Applications. Springer-Verlag,1997.

93



16th Canadian Conference on Computational Geometry, 2004

[7] Decimator¹ TM1.0,RaindropGeomagic,Inc.
http://www.geomagic.com/products/decimate/.

[8] I. Ilinkin, R. Janardan,M. Smid,E. Johnson,P. Castillo,and
J. Schwerdt.Approximatingcontact-areaof supportsin lay-
eredmanufacturing. TechnicalReportTR–04–001, Dept.of
CS&E,Univ. of Minnesota,2004.

[9] E. Johnson. Supportgenerationfor three-dimensional lay-
eredmanufacturing. Master’s thesis,Dept.of CS&E,Univ. of
Minnesota,1999.

[10] Library for EfficientDataTypesandAlgorithms.
http://www.algorithmic-solutions.com.

[11] J. Majhi. Geometricmethodsin computer-aideddesignand
manufacturing. PhD thesis,Dept. of CS&E, Univ. of Min-
nesota,1998.

[12] J. Majhi, R. Janardan,J. Schwerdt,M. Smid, andP. Gupta.
Minimizing support structuresand trapped area in two-
dimensional layered manufacturing. CGTA, 12:241–267,
1999.

[13] J. Majhi, R. Janardan, M. Smid, and P. Gupta. On some
geometricoptimizationproblemsin layeredmanufacturing.
CGTA, 12:219–239,1999.

[14] MATLABTM6.5,TheMathworks,Inc.
http://www.mathworks.com/products/matlab/.

[15] J. Schwerdt. Entwurf von Optimierungsalgorithmenfür ge-
ometrischeProblemeim Bereich RapidPrototypingundMan-
ufacturing. Ph.D.thesis,Departmentof CS,Univ. of Magde-
burg, 2001.

[16] J.Schwerdt,M. Smid,R. Janardan, E. Johnson, andJ.Majhi.
Protectingcritical facetsin layeredmanufacturing. CGTA,
16:187–210,2000.

[17] H. Shauland D. Halperin. Improved construction of verti-
cal decompositionsof 3d arrangements. In Proc. 18th ACM
SoCG, pages283–292, 2002.

m
odel

#facets
m

ax
ratio

m
in

B
FA

m
ax

P
FA

m
ax

P
F

C
P

C
F

lat
R

andom
com

p.
(%

)
T

im
e

(s)
o
l
d
b
a
s
e
x

3660
15.60

3.33º »¼

1.72º ½¼

12.40º ¾¼

8.16º ¿¼

12.40º ¾¼

10.37º À¼

83
270

t
o
d
2
1

1128
7.19

1.05º ½¼

1.05º ½¼

3.87º ¾¼

3.81º À¼

1.05º ½¼

4.31º Á¼

76
124

3
8
5
7
4
3
8

12184
3.37

2.63º Á¼

2.54º ¿¼

2.54º ¿¼

2.41º »¼

2.32º ½¼

2.55º ¾¼

9
3458

t
r
i
a
d
1

11352
2.89

1.87º À¼

2.13º ¾¼

2.13º ¾¼

1.43º ½¼

1.43º ½¼

1.74º ¿¼

18
3262

e
c
c
4

4994
4.89

1.18º ½¼

1.18º ½¼

1.37º ¿¼

1.92º ¾¼

1.80º À¼

2.65º Á¼

55
1272

c
o
v
e
r
-
5

906
5.71

3.92º ¿¼

3.92º ¿¼

3.92º ¿¼

3.10º ½¼

4.80º Á¼

3.79º »¼

18
30

f
0
m
2
7

3730
4.29

2.40Â ÃÄ

2.33Â ÅÄ

2.33Â ÅÄ

2.39Â ÆÄ

3.26Â ÇÄ

2.69Â ÈÄ

13
319

s
t
l
b
i
n
2

2761
15.76

2.85Â ÉÄ

2.57Â ÅÄ

10.02Â ÈÄ

8.51Â ÆÄ

10.02Â ÈÄ

9.58Â ÃÄ

73
180

c
a
r
c
a
s
s
e

22876
6.23

3.77Â ÆÄ

3.47Â ÅÄ

4.19Â ÃÄ

4.38Â ÈÄ

3.47Â ÅÄ

4.89Â ÇÄ

29
12741

b
o
t
c
a
s
e

17642
3.04

2.11Â ÃÄ

2.11Â ÃÄ

2.11Â ÃÄ

1.54Â ÉÄ

1.29Â ÅÄ

1.95Â ÆÄ

34
7291

m
j

2832
5.32

2.18Â ÅÄ

2.39Â ÉÄ

2.39Â ÉÄ

2.56Â ÈÄ

2.39Â ÉÄ

3.00Â ÇÄ

27
197

t
o
p
c
a
s
e

16692
4.09

3.14Â ÈÄ

3.14Â ÈÄ

3.07Â ÃÄ

2.14Â ÉÄ

1.97Â ÅÄ

2.50Â ÆÄ

21
6800

p
y
r
a
m
i
d
1

10
14.34

1.00Â ÅÄ

3.65Â ÆÄ

6.02Â ÃÄ

1.00Â ÅÄ

6.02Â ÃÄ

7.27Â ÇÄ

86
5

p
r
i
s
m
1

20
55.20

1.00Â ÅÄ
1.00Â ÅÄ

24.00Â ÃÄ

1.00Â ÅÄ

24.00Â ÃÄ

28.53Â ÇÄ

96
12

Table
1:

P
erform

anceof
the

heuristics
for

approxim
ating

the
contact-area.

T
he

lasttw
o

m
odelsw

ere
hand-generated;the

rem
aining

m
odels

are
originals

from
S

tratasys,Inc.
(M

odelsin
table

row
s

are
pictured

colum
nw

ise.)R
unningtim

esexclude
the

com
putation

ofthe
ratio

for
the

random
heuristic,w

hich
is

usedonly
for

com
parison.N

um
bers

in
[

]
show

the
ranking

ofeachheuristic.T
he

colum
n

“com
p.”

show
s

the
fraction

ofim
provem

entofthe
ratio

given
by

the
top-ranked

heuristic
over

the
average

ratio
given

by
the

random
heuristic.

94


