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Separating points by axis-parallel lines

GruiaCalinescu*

Abstract

We studytheprodem of separating: pointsin theplane no
two of which have the samez or y-coadinateusinga min-

imum numker of vertical and horizontal lines avoiding the
points,sothateachcell of the subdvision containsat most
onepoint. We prove thatthis prodemandsomevariarts of it

areNP-compete. We give anappraimationalgorithm with

ratio 2 for the planarprodem, anda ratio d approaimation
algorithm for the d-dimersionalvariant,in which the points
areto be separatedising axis-paallel hyperplans. We re-
ducethe prablemto the rectanglestabbingprodem studied
by Gauretal [4]. Their appraximation algorithm usesLP-

rourding. Ouralgorithmpresentsinalterndive LP-rounding
procalurewhich alsoworksfor therectanglestabbingprob-

lem.

1 Introduction

Let P be a setof n points in the plane,no two of which
have the samez or y-coordinate. We considerthe problem
of finding a minimum setof axis-paallel lines that do not
passthrough ary of the given points, suchthateachcell of
theresultingsubdvision containsatmostonepoirt. In other
words,for eachpair of poirts thereis aline in our setwhich
separateshe two points. We refer to this prablem as the
sepaation problemSERRATION. Its natual extensionin
highe dimensios, calledthe multi-modal sensomallocation
prodem in [9], asksfor a minimum cardirality set of hy-
perplaneswhich separate: givenpoints. It hasapplicatiors
to fault-tderantmulti-modal sensoffusionin the context of
embededsensometworks [9]. It is alsoa natual prablem
to corsider from the persgctive of compuationalgeometry
andappeargo be closelyrelatedto otherprodemsof sepa-
rating points or hitting objectsstudiedrecettly in the CG
literature[1, 2,5, 6, 7].

When the numker of dimensiams is part of the input,
the separatia prodem hasbeenshavn to be NP-compete
[8]. However the proof of this result does not carry over
to the casewhenthe numter of dimersionsis small (e.g.,
in the plane). We prove that the separatin prodem is NP-
compgete. Our proof canbe adapte to shav thatothervari-
antsof theprodemareNP-conpleteaswell (seebelov). We
presentwo LP-basedppraimationalgoithmswith ratio 2
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in the plane,respectiely d in R?¢: the first is obtaired by
castingthe separatiorprablem asa specialcaseof the rect-
anglestabbingproblem[5, 4] (seeSection2). The second
usesa different— couwnting based— rounding procedire.

We show thatthe secondalgorithmalsoworks for the rect-
anglestabbingprablem,with thesameratio 2. We exhibit an
infinite sequene of exanplesin the plare having integrality

gap3/2, for bothproblems.Our mainresultis

Theorem 1 Thele existsa ratio 2 approximationalgorithm
for the sepaation problemin the plane. The above prob-
lemis NP-complete Moreover, assuming® # NP, there is
an absolue constanteg > 0 sud that no polynamial time
algarithm hasapproximationguaranteel + eg.

A natura variart of the above point separatia prodem
is a colored version the pointsare colored, andonehasto
find a minimum set of axis-paallel lines, suchthat the set
of points(if nonempty) in eachcell of theresultingsubdvi-
sionis morochramatic. Clearlyhaving eachpointcoloredby
adifferent coloris equialentto the original prodem. Thus
whenthe numtersof colorsis partof theinputthis prodem
is also NP-conplete. We prove thatit remainsso for ary
number k of colors, &k > 2. This version also exterds to
higher dimensioms, asthe original prodem does. Both our
algoithms canbe usedto obtaina 2-appoximatesolution
for the coloredversionin the plane or d-apprximatesolu-
tionsfor the coloredversionin R?.

2 Algorithms for the separation problem in the plane

Without lossof generality we canrestrictthe setof vertical
or horizantal separatindginesto aset of 2(n—1) caronical
lines, onefor eachpair of consecutie points with respecto
thez-coordirate,andonefor eachpair of consective points
with respecto the y-coordinate(say at the averag coord-
natevalueof two corsecutve points).

We first give two lower boundson OPT, the size of an
optimal solution Considerthe comgete geometic graph
G = (V, E) whosevettex setis the setP of n points. We
saythattwo edgesof G areindepenlent if thereis no ver
tical or horizortal line thatintersectshothin their interior.
Let I be a maximun indeenden setof edgesof G. Then
clearly OPT > |I|, sinceeachedgeof I requresa distinct
separatig line.

PutOPT = I. Themaximumnumter of cellsinducedby
! linesis attainedvhenthelinesaredividedevenlyinto verti-
calandhorizantal. Sinceeachpoint requresadistinctcell of
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thearrargemenof! lines,wehave (|1/2|+1)([1/2]+1) >
n, whichimplies

OPT > [2¢/n] —2. (1)

In the rectande stabbirg problem([5, 4], we aregivena
setof (nordegererate)axis-paallel rectandesin the plane,
with theobjedive of stabbingall therectandeswith themin-
imum numker of axis-parallelines (arectandg is saidto be
stabbeddy line £, if £ intersectsts interior). Gaur, Ibarak
andKrishnanurti have recettly givenaratio 2 appoxima-
tion algorithm for this prodem [4].

Let usfirst seehow the separatiorpraoblem canbe castas
arectande stabbingorodem. For eachpair of pointsu, v €
P, considertherectangleR,,,, whosediagoral is uv. Then
separatingall the poirts in P is equialentto stabbingall
rectandes R, with u,v € P. Notealsothatit is enowh
to restrictourselvesto emptyrectandes, i.e., thosethatdo
not containotherpointsof P: stabbingall emptyrectandes
R,, guaanteeghatall rectandes arestabbed However, in
geneal thisrestrictionmaybe not significant,asit is easyto
constret examgeswith 2(n2) emptyrectanglesleternined
by then poirts.

LetR bethecollection of rectanglesn therectamgle stab-
bing problem. A set£ of canorical linesis selectedirst, as
in the separatiorprodem (see[4] for detailsregardingthis
selection). The natual IP (integer progam) with variabes
X, forL e Lis

minimize Z zy (2)
LeL
subject to Z 2, >1 VRER (3)
L stabs R
zy € {0,1} VL e L. (4)

The linear progammingrelaxatian of IP is obtainedby re-
placingtheconstraintg4) by

z,>0 VL€ L. (5)

Denoteby LP thevalueof thelinearprogmamin (2). The
algorithm of Gauretal. solvesthelinearprogamandclas-
sifies rectanges as horizantal or vettical (with ties broken
arbitraily), depewling onwhetrer

1 1
g T > B or E Tr > >
L: horizontal L: vertical
stabs R L stabs R

It then solves optimdly the prodem of stabbimy the hori-
zontal rectandes by horizantal lines, and that of stabbing
the vertical rectangledy vertical lines, by solving the cor
respouing linear programsL Py and LPy. The solutiors
of thesetwo linear progams are integral, a property that
follows from the total unimadularity of their systemmatri-
ces. Puttingtogethe the two setsof lines resultsin a 2-
apprximationalgorithm, usingagainthe total unimodular
ity property We remak here,thatinsteadof solving LP g

andL Py, onecansolwve directly the correspading stabbirmy
problemsusingthegreed algorithm, sincethesebecone in-
tenal stabbingproblens ontheline.

Theformuation of theintegerandlinearprogamsfor the
separatio prablemis anal@ous.ThelP with variablesX ,,
forLe Lis

minimize Z zrL (6)
LeL

subject to Z zr, > 1 VY(u,v) (7

L separates uv
zr €{0,1} VL€ L. (8)

The linear progammirg relaxationof IP is obtaired by re-
placingtheconstraits (8) by

xr, >0 VLe L. (9)

The2-appoximatesolutionis obtairedin the sameway.

We now provide a new, concepually simpler LP-based
algoithm that only solvesthe linear progam (6), (7), (9),
anddirectly rourds the solution. Go through the horizantal
linesin order of their y-coadinates,addingup their frac-
tions. Whenever the total reachesl /2, pick thatline, reset
the total to 0, and keepgoing. Do the samewith the ver-
tical lines. The picked lines canrot missary edge Since
LP < OPT, theapprximationratiois 2. It is easyto see
thatthis algoithm worksfor therectande stabbimg prodem
aswell, with the sameratio of 2.

Let R be the set of empty rectanglesR,,. We have
|R| = Q(n) and|R| = O(n?). Dende by R, the setof
emptyrectanglesk,,,,, wherew lies to the left of v. R can
becomputedin O(n?) time, by comptingR,, in O(n) time
for eachu € P. Thedetailsareomitted.

We finally remarkthat both algoithms can be usedto
solve the coloral versim of the separatiomproblemin the
planewith the sameratio of 2: write linearconstrints only
for the setof bichromaticedges,i.e., thosewhoseendpants
have different colors.

2.1 Integrality gap

We now shav aninfinite sequencef exampesin the plane
having integrdity gap3/2, for both the rectanglestabbing
andthe separatiorproblam. It is enowgh to do this for the
separatio problem(asa specialcaseof the rectande stab-
bing prodem).

Lemma2 The integrality gap of the linear program
(6), (7), (9) is 3/2 for aninfinite classof examples.

Proof. Considetthefive-pdnt configuationin Fig. 1 (left),
thatwe call an X. The pointscanbe fractiorally separate
with weights1/2 on eachof the four canorical lines shovn
in thefigure. ThusLP < 4/2 = 2. Usingthetrivial lower
bound (1) (or by inspectim) givesOPT > [2+/5] —2 =3,
andit is easyto seethatthis s tight.
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Figurel: A classof exanpleswith integrality gap3/2.

By repating k timesthe X diagaally, suchthattwo ad-
jacent X's shareone point, we obtaina corfiguration with
4k + 1 points, asin Fig. 1 (right), for & = 3. Onecan
think of the pointsbeingplacedon an (infinite) chessboal.
Obsene thatin eachrow or columnof the boardthe points
have increasingr andy-coordinges. Again, the points can
be fractionally separatedvith weights1/2 on eachof the
canorical linesshawvnin thefigure Thus LP < 4k/2 = 2k.
To separatdhe points of each X requiresthreelines, and
sincethe points have increasinge andy-coadinatesin each
row or columrm, noline usedto separat®ne X is of ary help
in separatingpther X's, thusOPT > 3k. It is easyto see
that3k linesarealsoenaugh,andthelemmafollows. O

3 Hardness results

3.1 NP-completeness

The decisionversionof the separatiorproblemis clearlyin
NP, sowe only have to prove its NP-harahess. Inspired by
therediction from Propaition 6.2 of [5], we redwcethe sat-
isfiability prodem 3-SAT to the separatiorprablem in the
plane(SERARATION). Theinput to 3-SAT is aboolean for-
mula ¢ in 3-CNF form, i.e., eachclausehasexactly three
literals. The problemaskswhetter ¢ is satisfiable 3-SAT is
known to beNP-complée [3]. Let ¢ have n variablesandm
clausesTherediction constructsasetPy of 4n 4 12m + 2
pointsin the plane,no two of which have the samex or y-
coordnate. The constructiao is illustratedin Figure 2 for
p=0t+y+2)(T+y+2)(T+7+7Z). Heren = 4 and
m = 3; thethreeclausesredenoted”, Cs, Cs.

Thereare threetypesof points: variable points, clause
pointsandcontmol points. The contrd pointscomein pairs
and have increasingy-coadinateswhen scannedrom left
to right: derotedqs,...,@ip+om+2. FOrl <i < n+1,
the pair g2; 1, g2; "forces” a horizantal line (which is more
usefulthanthevettical line separatinghe pair),andfor n. +
2 <14 < 2n+m+ 1, thepairgs;_1, go; "forces” a vettical
line. We call theselinesgrid lines andwe dende by h the
lowesthorizortal grid line. Therearethreevariablepoints

opl2s

,,,,,,,,,,,,,,,,,,,,,,,,,

Figure2: The poirt setP, correspndirgto ¢ = (t +y +
Z)(T+7+2)(T+7+Z). Thesolution(setof separatindines)
corresponéhg to the truth assignment = 1,z = 1,y =
0,z = 1 is shown; the grid lines are solid, while the other
separatig linesaredashed.

for eachvariable andnineclausepoints for eachclause The
nine poirts of eachclauseC' aremadeup of six pointsthat
apper in the rows of the varialles thatappeaiin C (aboe
the hotizontalline k), andthreepoints belov h. We have a
pair of pointsin thegrid cell given by eachvaiable-clause
pair(x, C), wherethevarablex appeasin C, thussix points
per clauseabove line h. The threepointsof eachvariabe
requre two separatindines. Every optimal solutioncanbe
assumedo useexadly oneverticalline, asoneverticalline
also separateswo contiol points and a secondone is not
neeced. The choiceof the higher(resp lower) horizantal
line correspndsto settingof thevariabe to true(resp.false).
If = appearsinregatedin C, the pair of pointsis separate
by the higherhorizantal line, whereasf x appeas negatel
in C, the pair of pointsis separatedby the lower horizantal
line.

Clearly, corstructing P, canbe accomplishd in polyno-
mialtime. Theresultfollows oncewe establistthefollowing
claim (proof omitted)

Claim 1 ¢ is satisfiableif andonly if P4 canbe sepaated
using4n + 3m + 2 lines.

We canusethe sameredudion to show thatthe separa-
tion prodem with coloredpoirts is alsoNP-compete. The
2-cdoring that we use hasthe property that all the edges
specifiedin the abore prod arebichramatic (i.e., their end-
points have differentcolors). We omit the detailsfor lack of
space We thushave

Cordlary 1 Thesepaastion problemin the planewith col-
oredpointsis NP-complete
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3.2 APX-hardness

ThemaximunsB-satisfialility problemMAX-3SAT is thatof
finding a truth value assignmenwhich satisfiesthe max-
imum numter of clausesin a Booleanformula in 3-CNF
form. For eachfixed k, defineMAX-3SAT (k) to bethere-
strictionof MAX-3SAT to Booleanformulaein which each
variable occus at mostk times. Theoem 3 below is im-

mediatefrom Theoems29.7,2911, andCorollary 29.8in

[10].

Theorem 3 [10] Assumind® # NP, thereis anabsolde con-
stanteys > 0 sud that no polynamial time algorithm for
MAX-3RT(5) satisfiesat least(1 — e ar)m clausesor every
satisfiableformula¢ with m clauses.

To prove the appoximation harchessstatedin Theorem1,
we usethe samerediction, and Theaem 3. Calculations
shav thatonecantake e s = €;7/75. We omit the details.

4 Remarks

4.1 Higher dimensions

Following [4], it is now straightfowardto obsene thatboth
our algoritmsyyield a factord appraimation for the sepa-
rationprodem in R?. This holds for the colored versionas
well. Onehasto replacel /2 with 1/d in thecorrespading
places. In thefirst phase, after solving the linear progiam,
edgesreclassifiednto d types,depenihg onthecoodinate
for whichthe sumof fractiorel weightsis atleastl /d. In the
secondphase the first algaithm solvesd linear programs
(asin [4]), or solvesd intenal stabbimy prodemsontheline
(asin Section2). The secondalgorithmcyclesthrough all
coordnatesandfor eachcoodinate,goesthroudh thehyper
planesin order andpicks a hyperplare whenthe total sum
of thefractiond weightsreached /d. Thetotalis thenreset
to 0, andtheprocesgontintes.

4.2 Concluding remarks

Severalinterestingquestiois regardingthe separatiorprob-
lem in the planeremain suchas: Is it possibleto improve
theratio 2 appraximatior? Do specialcasesg.g.,pointsin
convex position,admit betterapgoximatin ratios, or even
exactsolutions?Are thereplana exanpleshaving integral-
ity gaplargerthan3/2? We have exanrplesfor which every
LP solutionis not half integral. Using rounding, one can
obtainaratio 3/2 appoximatian for instancesvhoseLP so-
lution is half integral. Onecanpoterially strengtienthelLP
by addirg constraims requring that eachtriplet of pointsis
fractiorally separatedby at least2, but we did not find yet
ary benefitin doingthat.
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