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Encoding Quadrilateral Meshes
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Abstract

An important problem in geometric compression is to
find succinct representations (encoding schemes) for the
conectivity of polygonal meshes. In this note, we show
that the encoding scheme discussed in [1] for quadrilat-
eral mesh connectivity can be improved from 3.5 bits
per vertex to less than 3 bits per vertex. We also show
that an easy equivalence between the labelling schemes
of King et al [2] and of Kronrod-Gotsman [1], improves
this further to 2.67 bits per vertex. The same upper
bound has also been reported in [2], making an involved
use of the CLRES labelling scheme.

1 Introduction

Following the publication of Deering’s paper [3], geo-
metric compression has become a very active field of
research [2], [1]. The emphasis of the research has pri-
marily been on finding efficient schemes for encoding
the geometry (connectivity) of polygonal meshes. The
efficiency of such schemes are quantified by the num-
ber of bits needed per vetex of the mesh or the num-
bers bits required per edge of the mesh. The practical
significance of this is that it enables one to store and
transmit such meshes (over the Internet) succinctly. In
this note we show that the encoding scheme discussed
in [1] for meshes made up of quadrilaterals only (quad
mesh, for short) can be improved to less than 3 bits per
vertex. We also show that an easy equivalence between
the labelling schemes of King et al [2] and of Kronrod
& Gotsman [1], improves this further to 2.67 bits per
vertex. The same upper bound has also been reported
in [2], making an involved use of the CLRES scheme.

2 Kronrod-Gotsman scheme

The Kronrod-Gotsman scheme [1] generalizes the
CLRES labelling scheme of [2] to non-triangular meshes.
Their main observation is that as we traverse a mesh
(with or without boundary) in depth-first order, the in-
teraction of each polygon with the rest of the mesh can
be enumerated in a finite number of ways. For example,
in a quad mesh each quad interacts with the rest of the
mesh in one of 13 ways (Fig.1, arrows indicate the cur-
rent gate) and hence this interaction can be coded in a
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Figure 1: Interaction of a quad with the mesh

unique manner. It is easy to enumerate all these cases
if we note that each of the remaining three edges of the
current quad either belongs to the mesh boundary or
doesn’t, and so also for the remaining two vertices.

The compression process traverses the mesh in depth-
first order, starting with a quad, at least one of whose
edges is part of the mesh boundary. Note that if a mesh
is closed we can create a boundary by removing one
of the polygons. In the following discussion, the term
gate will mean an edge of a quad that we are currently
visiting, and one that it shares with the current mesh
boundary.

For example, if we traverse the quad mesh of
Fig.2, starting with the thick edge, and always choose
the next gate to be the edge of the current quad
that is counterclockwise with respect to the cur-
rent gate then we get the following output string:
Q13Q6Q6Q5Q12Q12Q6Q6Q12Q12Q9Q1Q6Q1
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Figure 2: Traversing a quad mesh

3 Encoding scheme with less than 3.0 bpv

Kronrod & Gotsman [1] proposed a prefix-free variable
length encoding scheme for such a string that needs at
most 3.5 bits per quad. We show that this can be im-
proved to less than 3 bits per vertex.

As we process a quad, we introduce new edges
and vertices. These new edges and new vertices
are free edges and vertices that become part of the
mesh boundary when we process and remove the
current quad. An edge or vertex of a quad is free
if it doesn’t belong to the mesh boundary. Table 1
summarizes this information for each of the thirteen
types of quad that is encountered during mesh traversal.

We also have the following important observation
about the encoding process.

Claim 1 In a manifold mesh, a quad of type
Q5, Q10, Q12,or Q13 is never followed by a quad of
type Q1, Q2, Q3, Q4, Q5, if while traversing the mesh we
choose the next gate to be situated counterclockwise with
respect to the present one.

Proof: This is immediate as each quad of type Q5, Q10,
Q12 or Q13 leaves a free vertex and the choice of the next
gate makes it impossible for the next quad to have the
edge previous to the gate on the active edge boundary
as is required to have a quad of type Q1, Q2, Q3, Q4, Q5.

Type # of new # of new
edges vertices

Q1 0 0
Q2 1 0
Q3 2 0
Q4 1 0
Q5 2 1
Q6 1 0
Q7 2 0
Q8 3 0
Q9 2 0
Q10 3 1
Q11 3 1
Q12 2 1
Q13 3 2

Table 1: Mesh-Quad Interactions

Note 1 In the paper by King et al [2], they point out
an exception to the above claim when the quad mesh
has a an internal valence-two vertex (that is, a ver-
tex on which exactly two quads are incident) and deals
with this situation separately, resulting in an encoding
scheme that has an upper bound of more than 3 bits per
vertex. For a manifold mesh, the claim is true without
any exception.

In view of the above observation, we borrow an
idea from the coding scheme of [2],to set the code for
each interaction-type as in the table below to obtain a
variable-length prefix-free coding scheme.

We argue below why the above coding scheme pro-
vides an upper bound of 3.0 bits per vertex for the
Kronrod-Gotsman scheme.

We assume that we have a quad mesh homeomorphic
to a sphere. Let E be the number of its edges, V the
number of its vertices and Q the number of quads it
has. Since each edge is shared by exactly two quads,
E = 2Q. Combining this with Euler’s formula, we get

V = Q + 2 (1)

For a very large mesh, Q >> 2; therefore, ignoring the
additive term in (3) above, we can assume that V = Q.

Let |Qi| denote the number of quads of type Qi and
|Qi−j | = |Qi| + . . . + |Qj |, j > i. From V = Q above
and Table 2, it follows that

2|Q13| + |Q5| + |Q10−12| = Q (2)

as the left-hand side counts the number of vertices in
the quad mesh.

Again, as V = Q (approximately), the number of
quads which have two free vertices must be equal to the
number of quads which have no free vertices. Thus from
Table 1, it follows that,

|Q13| = |Q1−4| + |Q6−9| (3)

Each branch in a quad spanning tree ends in a quad
of type Q1 (a leaf node), and each branch begins either
at the root gate or at a quad of type Q3 or Q7−11.
With each quad of type Q3, Q7, Q9, Q10, and Q11, one
more quad of type Q1 is associated. With each quad of
type Q8, two more quads of type Q1’s are associated.
Therefore, we have the following constraint.

|Q3| + |Q7−11| + |Q8| = |Q1| − 1 (4)

Using the constraint of equation (3), we can pair a
quad of each of the types Q1−4 and Q6−9 with a quad
of the type Q13 as shown in Table 3 (Here and subse-
quently, we have taken the liberty of denoting a quad
by its type).
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Encoding Current Quad Next Quad Code Num. of bits
Quad started
with Q6-13

Q6 Q1-5 11111 5

Q6-13 11110 5
Q7 Q1-5 11101 5

Q6-13 11100 5
Q8 Q1-5 11011 5

Q6-13 11010 5
Q9 Q1-5 11001 5

Q6-13 11000 5
Q10 Q6-13 10111 5
Q11 Q1-5 10110 5

Q6-13 10101 5
Q12 Q6-13 100 3
Q13 Q6-13 0 1

Quad started
with Q1-5

Q1 Q1-5 00 2

Q6-13 01 2
Q2 Q1-5 1100 4

Q6-13 1101 4
Q3 Q1-5 1010 4

Q6-13 1011 4
Q4 Q1-5 1000 4

Q6-13 1001 4
Q5 Q6-13 111 3

Table 2: Coding Scheme

Code1 bits in Code1 Code2 bits in Code2 Average bits
Q1 2 Q13 1 1.5
Q2 4 Q13 1 2.5
Q3 4 Q13 1 2.5
Q4 4 Q13 1 2.5
Q6 5 Q13 1 3.0
Q7 5 Q13 1 3.0
Q8 5 Q13 1 3.0
Q9 5 Q13 1 3.0

Table 3: Code bits analysis for Q1 to Q9

Thus the grouping of quads of type Q1−9 with quads
of type Q13 yield an average bit count of at most 3.
Next, we use the constraint of equation (4) to refine
this analysis even further. This constraint implies that
|Q7−11| + |Q8| < |Q1| − 1. Therefore, quads of each of
the types from Q7−11 and Q8 can be associated with at
most one quad of type Q1.

Since quads of type Q3 have been taken care of, we
don’t have to find pairs for quads of this type. Since
quads of type Q1 have been grouped with quads of type
Q13 already, and a quad of type Q1 is associated with a
quad of each one of the types Q7, Q9, Q10andQ11, while
two quads of type Q1 are associated with a quad of type
Q8, we need to associate a a quad group (Q1, Q13) with
each one of the quad groups/quads (Q7, Q13), (Q9, Q13),
Q10, and Q11. Further, we need to associate two quad

groups (Q1, Q13) with one quad group (Q8, Q13). The
grouping details are shown in

The above grouping ensures that Q7, Q8, Q9, Q10, Q11

can be grouped to achieve an upper bound of at most
3 bits per vertex. Interaction-types Q5 and Q12 do not
need to be grouped, since these are already assigned
3 bits each. We conclude that quadmesh connectivity
can be encoded in less than 3 bits per vertex. Table 5
summarizes the final groupings.

From Table 3, the total cost of the encoding is

3Q − (Q2| + |Q3| + |Q4|) − 3(|Q7| + |Q9|) − 6|Q8| −
|Q10| − |Q11| − 3|Q3| − 3.

Since V = Q + 2 (exactly) for a quad mesh, the total
cost is therefore guaranteed to be less than 3 bits per
vertex.
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Group Total bits Group Total bits Average bits
(Q7, Q13) 6 (Q1, Q13) 3 2.25
(Q8, Q13) 6 (Q1, Q13, Q1, Q13) 6 2.0
(Q9, Q13) 6 (Q1, Q13) 3 2.25

Q10 5 (Q1, Q13) 3 2.67
Q11 5 (Q1, Q13) 3 2.67

Table 4: Code bits analysis for Q7 to Q11

Grouping Total Cost quads in Amortized bits saved occurrences
group Cost of this group

(Q2, Q13) or (Q3, Q13) 5 2 2.5 1 |Q2| + |Q3| + |Q4|
or (Q4, Q13)

(Q7, Q13, Q1, Q13) 9 4 2.25 3 |Q7| + |Q9|
or (Q9, Q13, Q1, Q13)

(Q8, Q13, Q1, Q13, Q1, Q13) 12 6 2.0 6 |Q8|
(Q10, Q1, Q13) 8 3 2.67 1 |Q10|
(Q11, Q1, Q13) 8 3 2.67 1 |Q11|

remaining(Q1, Q13) 3 2 1.5 3 |Q3|+1
Q5 3 1 3 0 |Q5|

(Q6, Q13) 6 2 3 0 |Q6|
Q12 3 1 3 0 |Q12|

Table 5: Amortization Analysis

KG Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13

KRS LE LL LS LR LC LE SL SS SR SC CS CR CC

Table 6: Correspondence between the labelling schemes

4 Improving the upper bound to 2.67 bpv

Table 6 shows the connection between the labelling
schemes of Kronrod-Gotsman[KG] and King et al[KRS]
The first row contains the quad labels, while the second
row contains the equivalent combinations of CLRES la-
bels. This correspondence is obtained by noticing that
in the scheme of King et al [2] a quad is implicitly split
by a diagonal into two triangles so that the next gate
is situated counterclockwise with respect to the current
one.

From the above table of equivalence of labels, we can
obtain an encoding scheme that uses less than 2.67 bits
per vertex, using the encoding schemes of King et al [2].

5 Conclusions

In this note, we show that a scheme proposed by Kro-
nrod & Gotsman [1] can be improved to have an upper
bound of less than 3 bits per vertex. Also an easy equiv-
alence between the labelling schemes of [1] and [2] shows
that this can be further improved to 2.67 bits per vertex
for manifold meshes. We believe that the upper bound
can be further improved and this is the main open ques-
tion.
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