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The spanning ratio of β-Skeletons
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Abstract

In this paper we study the spanning ratio of the β-
skeletons for β ∈ [0, 2]. Both our upper-bounds and
lower-bounds improve the previously best known results
[10, 12].

1 Introduction

Proximity graphs [1, 2, 3, 4] have been used exten-
sively in various fields including pattern recognition,
GIS( Geographic Information System), computer vi-
sion, and neural network [5, 3]. The spanning ra-
tios of the proximity graphs are of great interest to
many applications. For example, several results showed
that Delaunay Triangulation has a constant bounded
spanning ratio, which is at least π

2 [6] and at most
2π/(3 cos(π/6)) � 2.42[2].

As one of the proximity graphs, β-skeletons have been
studied extensively in [8, 9, 10, 11]. Our main concern
in this paper is about the spanning ratio (or dilation)
of the β-skeletons. Given a set S of n points in a two
dimensional plane, two points u and v are β-neighbors
in S if N(u, v, β) contains no point other than u or v
in S in its interior 1. The most common definition of
N(u, v, β) is so-called Lune-Based Neighborhoods, which
is defined as follows.

Case 1: β ≥ 1. N(u, v, β) is the intersection of the
two circles of radius β‖uv‖

2 centered at the points p1 =
(1 − β

2 )u + β
2 v and p2 = β

2 u + (1 − β
2 )v, respectively.

Case 2: 0 ≤ β ≤ 1. N(u, v, β) is the intersection of
the two circles of radius D(uv)

2β passing through both u
and v.

Here ‖uv‖ is the Euclidian distance between u and v.
The β-skeleton of a point set S is the set of edges joining
β-neighbors in S. When β = 1, the closed N(u, v, β)
corresponds exactly to the Gabriel neighborhood of u
and v. When β = 2, the open N(u, v, β) is the rela-
tive neighborhood of u and v. As β approaches ∞, the
neighborhood of u and v approximates the infinite strip
formed by translating the line segment (u, v) normal to
itself. Notice when β > 2 the β-skeleton graph can be
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1There are two possible interpretations of the interior: one

includes the boundary which is called Closed Neighbor and the
other excludes the boundary which is called Open Neighbor. We
always consider closed neighbor here.

disconnected, so we restrict our attention to the case
that 0 ≤ β ≤ 2. As β approaches 0, N(u, v, β) ap-
proximates the line segment connecting u and v. Thus,
except in degenerate situations (three or more points co-
linear), all point pairs are β-neighbors under this scheme
for β sufficiently small, which means that we can find a
β to make the β-skeleton of S a complete graph.

For β ∈ [0, 1], the spanning ratio of β-skeletons is at
most O(nc2) [10], where c2 = (1− log2(1+

�
1 − β2))/2

and at least Ω(nc1) [12], where c1 = 1 − log5(3 +�
2 + 2

�
1 − β2). For some special β-skeletons such as

Gabriel graph (GG) [1, 13, 10] (β = 1) and the Rela-
tive Neighborhood Graph (RNG) [4, 14, 3, 15] (β = 2),
Bose et al. [10] gave a bound which is Θ(

√
n) and Θ(n)

respectively. Since the spanning ratio increases over β
for β ∈ [1, 2], the spanning ratio of the beta-skeletons
for β for β ∈ [1, 2] is at least Ω(n

1
2 ) and at most O(n),

which is also the best known result till now.
The contribution of this paper is: We first prove that,

for β ∈ [1, 2], the β-skeletons have spanning ratio at
most (n − 1)γ , where γ = 1 − 1

2 log2(µ2 + 1), µ2 =
2−β

β . We then show that the Gabriel Graph has exact
spanning ratio

√
n − 1 and the Relative Neighborhood

Graph has exact spanning ratio n − 1. The spanning
ratio of β-skeletons for β ∈ [0, 1] is at most (n − 1)γ ,
where γ = 1

2− 1
2 log2(µ1+1), µ1 =

�
1 − β2. Finally, we

construct a point set whose β-skeleton, for β ∈ [0, 1], has
spanning ratio nc3 , where c3 = 1

2 − 1
2 log2(1 +

�
µ1+1

2 ),
which improves the previously best known lower bound
[12].

2 Upper Bound of Spanning Ratio

Consider a geometry graph G = (V,E) over n points V .
For each pair of points (u, v), the length of the shortest
path connecting u and v measured by Euclidean dis-
tance is denoted by DG(u, v), while the direct Euclidean
distance is ‖uv‖. The spanning ratio (also dilation ra-
tio or length stretch factor) of the graph G is defined by
ψ(G) = maxu,v∈G

DG(u,v)
‖uv‖ . If the graph G is not con-

nected, then ψ(G) is infinity, so it is reasonable to focus
on connected graphs only.

2.1 Fade Factor of β-skeletons

Our analysis of the upper bound of the spanning ra-
tio of β-skeletons rely on our definition of fade fac-
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tor of β-skeletons, which is defined as follows. Given
a 2-dimensional point set S and its β-skeleton G(β),
choose any pair of points u, v ∈ S. If uv �∈ G(β), there
must exist a point w ∈ S other than u, v in N(u, v, β).
We say that the point w breaks edge (u, v) and define
x1 = ‖uw‖

‖uv‖ , x2 = ‖vw‖
‖uv‖ as the two fade factors of uv

by w. We then study the property of fade factors of
β-skeletons, illustrated by Figure 1.

Case 1: β ∈ [1, 2]. In this case, w must lie in the
shaded area N(u, v, β). For symmetry, we assume that
‖wu‖ ≥ ‖wv‖, 2 In triangles 	wup1 and 	wvp1, we
have ‖uw‖2 = ‖up1‖2 + ‖wp1‖2 − 2‖up1‖‖wp1‖ cos α
and ‖vw‖2 = ‖vp1‖2+‖wp1‖2−2‖vp1‖‖wp1‖ cos(π−α).
Consequently,

‖uw‖2 − ‖up1‖2 − ‖wp1‖2

‖up1‖ +
‖uw‖2 − ‖vp1‖2 − ‖wp1‖2

‖vp1‖ = 0

⇒ x2
1

2 − β
+

x2
2

β
=

1

2
+

‖wp1‖2

‖uv‖2

2

β(2 − β)
≤ 1

2 − β
.

Suppose that 0 ≤ µ2 = 2−β
β ≤ 1. We have the relation

between the fade factors when β ∈ [1, 2] and x1 ≥ x2,

x2
1 + µ2x

2
2 ≤ 1 (1)

x2

w

π−α
vu

α

p p1

x
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(a) β ∈ [1, 2] (b) β ∈ [0, 1]

Figure 1: The relations between fade factors of β-
skeletons.

Case 2. β ∈ [0, 1]. In this case, we have 1 = x2
1 +

x2
2−2x1x2 cos θ. Let cos α =

�
1 − β2. From θ+α ≥ π,

we have

1 ≥ x2
1 + x2

2 − 2x1x2 cos(π − α) = x2
1 + x2

2 + 2x1x2 cos α
(2)

2.2 Construction of the fade factor tree

Our analysis of the spanning ratio is based on a con-
cept called fade factor tree, which intuitively records
the edge-breaking sequence for a pair of points u and
v. The exact definition is given along the following con-
struction algorithm.

Algorithm 1 Constructing the Fade Factor Tree

2This assumption implies that ‖wp2‖ ≤ ‖wp1‖ ≤ ‖uv‖ and
x1 ≥ x2.

1. Construct the root node corresponding to uv.

2. If there is no point inside N(u, v, β) then stop. Oth-
erwise, assume a point u0 ∈ N(u, v, β). We put
edge uu0 as uv’s left child and edge u0v as uv’s
right child and label these two branches with their
fade factor x1 and x2 respectively. The leaf nodes
uu0, u0v form path uu0v.

3. If we already have a binary tree with k leaf nodes
p0p1, p1p2, · · · , pk−1pk, where p0 = u, v = pk. Let
S1 = {p0, p1, · · · , pk}. For every point p ∈ S, we
test if p breaks edge pipi+1. We consider five cases
here.

(a) If p doesn’t break any pipi+1 then continue to
try other points in S.

(b) If p ∈ S − S1 and p breaks a single edge
pipi+1 then similar to step (2), attach pip as
the left child and ppi+1 as the right child of
edge pipi+1.

(c) If p ∈ S − S1 and it breaks multiple edges,
choose such broken edge prpr+1 with the min-
imum index r and psps+1 with the maximum
index s. Attach node prp to node prpr+1 and
node pps+1 to node psps+1 in the tree. Mark
all leaf nodes between prp and pps+1. If all de-
scendant leaf nodes of an internal node have
marks, then also mark it. Delete all nodes
with marks.

(d) If p ∈ S1, say p = pj ,and it breaks single edge
pipi+1. If j > i + 1 then attach pipj to node
pipi+1, and mark all leaf nodes pmpm+1 for
i+1 ≤ m ≤ j−1. If j < i then attach pjpi+1 to
node pipi+1 and mark all leaf nodes pmpm+1

for j +1 ≤ m ≤ i. If all descendant leaf nodes
of an internal node have marks, then also mark
it. Delete all nodes with mark.

(e) If p ∈ S1, say p = pj and it breaks multiple
edges, choose the edge with the minimum in-
dex prpr+1 and the maximum index psps+1. If
j < r then attach pjps+1 to pjpj+1 and mark
all leaf nodes between pjps+1 and psps+1. If
j > s+1 then attach pspj to psps+1 and mark
all leaf nodes between psps+1 and pj−1pj . If
r + 1 < j < s then attach prpj to prpr+1

and attach pjps+1 to psps+1, then mark all
nodes between prpr+1 and psps+1. If an in-
ternal node’s all descendant leaf nodes have
marks, then also mark it. Delete all nodes
with mark.

4. When there is no updating to the tree, con-
duct the following reduction process: for ev-
ery internal node, if it has only one child then
remove its only child. Visiting all leaf nodes
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from left-to-right, we get a sequence of edges
uE0,B1E1, · · · , Bl−1El−1,Blv.

Observation 1 Observations of fade factor tree.

1. For every 0 ≤ i ≤ l − 1, we have Ei = Bi+1, so the
sequence can be written as u0u1, u1u2, · · · , ul−1ul.
(u0 = u, ul = v).

2. l ≤ n − 1, where n is the number of total points in
S.

3. u0u1, u1u2, · · · , ul−1ul corresponds to a simple
path connecting u and v in the β-skeleton.

We can show that the above algorithm terminates.
For detail of the proof, see the full version of the paper.

2.3 Upper bound when β ∈ [1, 2]

Previously, Bose et al. [10] gave an upper bound O(n)
for β-skeletons when β ∈ [1, 2] from the fact that, for a
point set S, the β1-skeleton belongs to the β2-skeleton
when β1 ≥ β2. They use the upper bound of the RNG
(β = 2) as upper bound for β ∈ [1, 2]. We improve it to

U(β, n) = (n − 1)γ ,

where γ = max{1 − 1
2 log2(µ2 + 1), g(µ2)} = 1 −

1
2 log2(µ2 + 1), µ2 = 2−β

β , and g(µ2) is the solution to

the equation (µ
1

g(µ2)

2 + 1)2g(µ2) = 1 + µ2 (See appendix
about the details of g(µ2) and γ).

Before presenting our proof, we list some simple re-
sults. If x1 ≥ x2 and subject to the constraint of (1),
then for a, b ≥ 0,

max
x1,x2

{ax1 + bx2} =
�

a2 + b2/µ2 ; if b ≤ µ2a (3)

max
x1,x2

{ax1 + bx2} = (b + a)/
�

µ2 + 1 ; if b ≥ µ2a (4)

Now we prove our upper bound by induction on n.
When n = 3, there are only three points u, v and w,
and suppose that uv is longest edge. If w doesn’t break
uv, then ψ(G) = 1 ≤ U(β). Otherwise, the relation of
the fade factors from (1) implies

ψ(G) = x1 + x2 ≤ 21− 1
2 log2(1+µ2) = U(β, 3).

Suppose for all k < n we have ψ(G) ≤ U(β, k). Then for
k = n, we construct the fade factor tree T , and suppose
the fade factors of the root are x1 and x2. Suppose there
are nl leaf nodes in root’s left subtree and nr leaf nodes
in root’s right subtree. Clearly, nl + nr ≤ n − 1 and
we have ψ(G) ≤ U(β, nl + 1)x1 + U(β, nr + 1)x2. By
induction, we have U(β, nl +1) ≤ nγ

l and U(β, nr +1) ≤
nγ

r . We consider two different cases here.

1. If U(β, nr + 1) ≥ µ2U(β, nl + 1), we have

ψ(G) ≤ (U(β, nl + 1) + U(β, nr + 1))/
�

1 + µ2

≤ (nl + nr)γ · 21−1+ 1
2 log2(1+µ2)/

�
1 + µ2

≤ (n − 1)γ = U(β, n)

2. If U(β, nr + 1) ≤ µ2U(β, nl + 1), we have ψ(G) ≤�
U(β, nl + 1)2 + 1

µ2
U(β, nr + 1)2. Let f(x) =

x2γ + 1
µ2

(n − x − 1)2γ . Differentiating f(x), we
get f ′(x) = 2γ[x2γ−1 − 1

µ2
(n − x − 1)2γ−1]. Since

1/2 ≤ γ ≤ 1, f(x) reaches its minimum at
point x0 = n−1

1+µ
1

2γ−1
2

, increases when x ≥ x0,

and decreases when 0 ≤ x ≤ x0. Notice that
U(β, nr + 1) ≤ µ2U(β, nl + 1), which implies that
xl = n−1

µ
(1/γ)
2 +1

≤ x ≤ n − 2 = xr. It is easy to show

that n−1

1+µ
1/γ
2

≤ x0 = n−1

1+µ
1/(2γ−1)
2

when γ ≤ 1 and

µ2 ≤ 1.

Consequently, U(β, nl + 1)x1 + U(β, nr + 1)x2

reaches its maximum at point xl or xr = n − 2.
We can show that it reaches the maximum at point
xl. Thus,

ψ(G) ≤�1 + µ2 · (n − 1)γ/(µ
1
γ

2 + 1)γ .

Notice (µ
1
γ

2 + 1)γ strictly increases over [0, 1] for γ.
Thus

ψ(G) ≤ �
1 + µ2 · (n − 1)γ/(µ

1
γ

2 + 1)γ

≤ �
1 + µ2 · (n − 1)γ/(µ

1
g(µ2)

2 + 1)g(µ2) = nγ

The upper bound we proved so far could be a loose
bound, and usually the β-skeletons cannot reach this
upper bound. But at some extreme cases, we can show
that the upper bounds are indeed tight.

When β = 1, the β-skeleton is the Gabriel Graph.
Then µ2 = 2−β

β = 1. It is easy to verify g(1) = 1
2 .

Thus,

γ = max{1 − 1
2

log2(2),
1
2
} =

1
2

In the following section, we construct an example such
that GG has spanning ratio (n− 1)

1
2 . Consequently, we

have

Theorem 1 The spanning ratio of Gabriel Graph is ex-
actly U(1, n) = (n − 1)

1
2 .

When β = 2, the β-skeleton becomes the RNG. No-
tice µ2 = 0, and it is not possible for U(β, nr) ≤
µ2U(β, nl). Then we have γ = 1. In the following sec-
tion we review an example in [10] such that RNG has
spanning ratio n − 1. Consequently, we have

Theorem 2 The spanning ratio of Relative Neighbor-
hood Graph is exactly U(2, n) = n − 1.

3
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2.4 Upper bound when β ∈ [0, 1]

The fade factors satisfy x2
1 + x2

2 + 2x1x2

�
1 − β2 ≤ 1

when β < 1. Let µ1 =
�

1 − β2 here. For symmetry,
assume that x1 ≥ x2. Thus, 0 ≤ x2 ≤

�
1

2+2
√

1−β2
.

If x1 ≥ x2 and subject to the constraint (2), then for
a > 0, b > 0,

max
x1,x2

{ax1 + bx2} =
�

a2 + b2 − 2abµ1�
1 − µ2

1

if b ≥ aµ1 (5)

max
x1,x2

{ax1 + bx2} = aµ1 if b < aµ1 (6)

When β ∈ [0, 1], we prove that the spanning ratio is
at most

U(β, n) = (n − 1)
1−log2(1+µ1)

2 ,

We prove this bound similar to the case β ∈ [1, 2]. When
k = 3, it is easy to verify the correctness of the bound.
Suppose when k < n this bound holds. For k = n we
also construct the fade factor tree T , and assume the
fade factors of the root are x1 and x2. Assume there are
nl leaf nodes in root’s left subtree and nr leaf nodes in
its right subtree, where nl+nr ≤ n−1. We have ψ(G) ≤
U(β, nl + 1)x1 + U(β, nr + 1)x2. Let a = U(β, nl + 1)
and b = U(β, nr + 1). We also prove it by cases:

Case 1: b < aµ1. In this case,we have ψ(G) ≤
µ1U(β, nl + 1) ≤ U(β, n).

Case 2: b ≥ aµ1. In this case we have ψ(G) ≤√
a2+b2−2abµ1√

1−µ2
1

, and it reaches the maximum when a = b.

Thus ψ(G) ≤ U(β, n+1
2 )
�

2
1+µ1

= U(β, n).

3 Lower bound of β-skeletons

3.1 Gabriel Graph (β = 1)

Gabriel Graph is a special case of β-skeletons with β =
1. We construct a set of n points whose Gabriel graph
has spanning ratio exactly

√
n − 1 as follows.

1. Let A1A0 be the diameter of a unit circle C1.

2. We then generate a point Ak from Ak−1 and Ak−2

for k ≥ 2. Draw a circle Ck−1 using Ak−1 and
Ak−2 as diameter, and let sin∠AkAk−1Ak−2 =
sin ∠αk−1 = 1√

n−k+1
.

Figure 2 (a) illustrates such construction. We notice
that the graph is divided into two parts, all points with
the odd index and all points with the even index. It
is not difficult to prove the following properties of the
constructed point set.

1. AkAk+2 = 1√
n−1

, for 0 ≤ k ≤ n − 2.

C

2C

3C

4C

n−2C

A5

A3

A1 A0

A2

A4

An−3An−2

An−1

α1

α2

α3

αn−2

α4

1

β

n

A3 A2

A0A1

A5

An−1

A4

αα
α

α
α

α
α

αα
α

α

β
β

β

β
β

α

A

(a) Gabriel Graph (b) Relative Neighborhood Graph

Figure 2: Point sets that achieve the upper bounds of
the spanning ratio.

2. Let αk = ∠Ak−1AkAk+1. Then sin αk = 1√
n−k

and ∠αk ≤ ∠αk+1. For every 1 ≤ k ≤ n − 2,
∠Ak−2AkAk+2 = π

2 + ∠αk + π
2 − ∠αk+1. Thus,

∠Ak−1AkAk+1 < π
2 .

3. For every AiAj , if |i − j| �= 2 then AiAj is not in
the Gabriel Graph. Thus, the Gabriel graph are
formed by these edges AiAi+2, 0 ≤ i ≤ n − 3, and
An−2An−1.

Obviously, the spanning ratio of this graph is
DG(A0A1)
‖A0A1‖ = n−1√

n−1
=

√
n − 1.

3.2 Relative Neighborhood Graph (β = 2)

For Relative Neighborhood Graph, the lower bound of
the spanning ratio is n−ε. We review the example used
in [10], illustrated by Figure 2 (b).

Here, α = 60◦ − δ and β = 60◦ + 2δ. Notice that all
triangles are similar. Assume that γ = sin α

sin β . Then in
triangle Ak−1AkAk+1, 1 ≤ k ≤ n−1, we have Ak−1Ak =
γk−1, Ak−1Ak+1 = AkAk+1 = γk. Thus, DG(A0A1) =
γn−1 +

�n−1
i=1 γi. When γ is sufficiently close to 1, we

have DG(A0A1) is sufficiently close to n− 1. Thus, the
spanning ratio of the Relative Neighborhood Graph is
sufficiently close to n − 1.

3.3 1 > β > 0 case

When β ∈ [0, 1], Eppstein [12] presents a fractal con-
struction that provides a non-constant lower bound on
the spanning ratio, and his result is summarized below:

Theorem 3 For any n = 5k +1, there exists a set of n
points in the plane whose β-skeleton with β ∈ (0, 1] has
the spanning ratio Ω(nc), where c = log5

5
3+

√
2+2µ

and

µ =
�

1 − β2.

4
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In this paper, we give a different construction that
achieves a better lower bound. Suppose that α =
arccos(

�
1 − β2), and θ = π − α. Then for any n =

2k+1, let P (β, k) be a path of 2k segment (defined along
our construction). Figure 3 illustrates our construction
of this β-skeleton for n points, which is described as
follows.

1. If k = 1, construct a triangle 	ABC such that
∠ABC = ∠ACB = π−θ

4 , so ∠BAC = π+θ
2 . Then

P (β, 1) is segments BAC. Call segment BC the
supporting segment of P (β, 1).

2. If k ≥ 1, first construct P (β, 1) = BAC. Then
construct two P (β, k−1), scale the supporting seg-
ments to length ‖AB‖, and align their supporting
segments to AB and BC respectively. Notice there
are two possible ways to place P (β, k−1), we should
choose the way such that P (β, k−1) lies inside the
triangle ∆ABC.

B C

A

B C

A

(a) n = 3 (b) n = 5
A

B C E
B C

A

D

(c) n = 9 (d) n = 2k + 1

Figure 3: Constructing the β-skeleton with large span-
ning ratio for β ∈ [0, 1].

Lemma 1 If ∠BAC ≥ π+θ
2 , then P (β, k) is a β-

skeleton of its points, where θ = π − arccos(
�

1 − β2).

Proof. In order to show that P (β, k) is a β-skeleton,
we prove that for any pair of no-adjacent points u and
v, they do not belong to the β-skeleton. Obviously
there must exist some i < k such that u and v be-
long to the different copy of adjacent P (β, i), assume
that A is the common point of these two copies, then
∠uAv ≥ ∠DAE = π+θ

2 −2 · π−θ
4 = θ, which finishes our

proof. Notice that the β-skeleton is still a connected
graph. Thus, all line segments constructed belong to
β-skeleton.

Obviously, if the two end points are normalized to
1, the spanning ratio is the total length of segments in
P (β, k).

Theorem 4 For any β ∈ [0, 1], there exists a β-
skeleton of n = 2k +1 points such that its spanning ratio
is Ω((n − 1)

1
2− 1

2 log2(1+
�

µ1+1
2 )), where µ1 =

�
1 − β2.

Table 1: Lower and upper bounds for spanning ratio
of β-skeletons. Here the constants used are c1 = 1 −
log5(3 +

√
2 + 2µ1), c2 = 1

2 − 1
2 log2(1 + µ1), c3 = 1

2 −
1
2 log2(1 +

�
µ1+1

2 ), and c4 = 1 − 1
2 log2(µ2 + 1). And

µ1 =
�

1 − β2 and µ2 = (2 − β)/β.
β ∈ (0, 1) β = 1 β ∈ (1, 2) β = 2

OldLower Ω(nc1) Ω(
√

n) Ω(
√

n) Ω(n)
OldUpper O(nc2) O(

√
n) O(n) O(n)

OurLower Ω(nc3)
√

n − 1 Ω(
√

n) n − 1
OurUpper O(nc2)

√
n − 1 O(nc4) n − 1

This theorem can be enhanced such that we can con-
struct examples for any integer n, but with a small con-
stant degradation of the spanning ratio. For Gabriel
Graph, from previous result by Eppstein [12], we get a
spanning ratio of Ω(nc) for 0.077 < c < 0.078, and ap-
plying Theorem 4, we get a spanning ratio of Ω(nc2) for
0.114 < c2 < 0.115, which is bigger than previous lower
bound, but is still much smaller than the tight bound
Θ(n

1
2 ). In general, for β ∈ [0, 1], our lower bound is

always better than the previous one, which is discussed
in the full version of the paper.

4 Conclusion

We studied the spanning ratio of β-skeletons with β ∈
[0, 2]. This class of proximity graphs includes the
Gabriel graph and the Relative Neighborhood Graph.
Table 1 summarizes our results compared with the pre-
viously best known results. For β > 2, β-skeletons are
not guaranteed to be connected. Thus, the spanning
ratio leaps to infinity.

Several open problems remain for investigation. It
would be interesting to close the gap between our lower
bound and the upper bound for β ∈ (0, 1) and β ∈ (1, 2).
We conjecture that our lower bound for β ∈ (0, 1) is
already tight.
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5 Appendix

In subsection 2.3, we show that the β-skeletons, β ∈
[1, 2], have spanning ratio at most (n − 1)γ , where γ =
max{1− 1

2 log2(µ2 + 1), g(µ2)}, µ2 = (2− β)/β ∈ (0, 1].
We then show that 1 − 1

2 log2(µ2 + 1) ≥ g(µ2).
Let f(x) = (µ1/x

2 + 1)2x. For any µ2 ∈ [0, 1], it is
easy to verify that both µ

1/x
2 + 1 and a2x(a ≥ 1) are

increasing on [0, 1], here a is a fixed constant. Thus,
f(x) increases over [0, 1]. With f(0) = 1 ≤ 1 + µ2

and f(1) = (1 + µ2)2 ≥ 1 + µ2, the equation (µ
1

g(µ2)

2 +
1)2g(µ2) = 1 + µ2 has exactly one solution g(µ2) over
[0, 1]. In fact, any solution to the inequality below is an

upper bound (µ
1

g(µ2)

2 + 1)2g(µ2) ≥ 1 + µ2.
Now we compare the the value of 1 − 1

2 log2(µ2 + 1)
and g(µ2), which is equivalent to compare the value of

f(µ2) = (µ
1

1− 1
2 log2(1+µ2)

2 + 1)2−log2(1+µ2) and 1 + µ2 for
µ2 ∈ [0, 1]. Figure 4(a) shows that f(µ2) ≥ 1 + µ2,

which means for µ2 ∈ [0, 1] γ = max{1 − 1
2 log2(µ2 +

1), g(µ2)} = 1 − 1
2 log2(µ2 + 1). See full version of the

paper for arithmetic proof.
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(a) g(µ2) is unnecessary. (b) lower bounds for β ∈ [0, 1].

Figure 4: (a) The upper bound for β ∈ [1, 2] can be
simplified. (b) Our lower bound for β ∈ [0, 1] is strictly
better than previous result.
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