The spanning ratio of β-Skeletons

Weizhao Wang* Xiang-Yang Li* Kousha Moaveninejad* Yu Wang* Wen-Zhan Song*

Abstract

In this paper we study the spanning ratio of the β skeletons for $\beta \in[0,2]$. Both our upper-bounds and lower-bounds improve the previously best known results [10, 12].

1 Introduction

Proximity graphs $[1,2,3,4]$ have been used extensively in various fields including pattern recognition, GIS(Geographic Information System), computer vision, and neural network $[5,3]$. The spanning ratios of the proximity graphs are of great interest to many applications. For example, several results showed that Delaunay Triangulation has a constant bounded spanning ratio, which is at least $\frac{\pi}{2}$ [6] and at most $2 \pi /(3 \cos (\pi / 6)) \simeq 2.42[2]$.

As one of the proximity graphs, β-skeletons have been studied extensively in $[8,9,10,11]$. Our main concern in this paper is about the spanning ratio (or dilation) of the β-skeletons. Given a set S of n points in a two dimensional plane, two points u and v are β-neighbors in S if $N(u, v, \beta)$ contains no point other than u or v in S in its interior ${ }^{1}$. The most common definition of $N(u, v, \beta)$ is so-called Lune-Based Neighborhoods, which is defined as follows.

Case 1: $\beta \geq 1 . N(u, v, \beta)$ is the intersection of the two circles of radius $\frac{\beta\|u v\|}{2}$ centered at the points $p_{1}=$ $\left(1-\frac{\beta}{2}\right) u+\frac{\beta}{2} v$ and $p_{2}=\frac{\beta}{2} u+\left(1-\frac{\beta}{2}\right) v$, respectively.

Case 2: $0 \leq \beta \leq 1 . N(u, v, \beta)$ is the intersection of the two circles of radius $\frac{D(u v)}{2 \beta}$ passing through both u and v.

Here $\|u v\|$ is the Euclidian distance between u and v. The β-skeleton of a point set S is the set of edges joining β-neighbors in S. When $\beta=1$, the closed $N(u, v, \beta)$ corresponds exactly to the Gabriel neighborhood of u and v. When $\beta=2$, the open $N(u, v, \beta)$ is the relative neighborhood of u and v. As β approaches ∞, the neighborhood of u and v approximates the infinite strip formed by translating the line segment (u, v) normal to itself. Notice when $\beta>2$ the β-skeleton graph can be

[^0]disconnected, so we restrict our attention to the case that $0 \leq \beta \leq 2$. As β approaches $0, N(u, v, \beta)$ approximates the line segment connecting u and v. Thus, except in degenerate situations (three or more points colinear), all point pairs are β-neighbors under this scheme for β sufficiently small, which means that we can find a β to make the β-skeleton of S a complete graph.

For $\beta \in[0,1]$, the spanning ratio of β-skeletons is at $\operatorname{most} O\left(n^{c_{2}}\right)[10]$, where $c_{2}=\left(1-\log _{2}\left(1+\sqrt{1-\beta^{2}}\right)\right) / 2$ and at least $\Omega\left(n^{c_{1}}\right)$ [12], where $c_{1}=1-\log _{5}(3+$ $\left.\sqrt{2+2 \sqrt{1-\beta^{2}}}\right)$. For some special β-skeletons such as Gabriel graph (GG) $[1,13,10](\beta=1)$ and the Relative Neighborhood Graph (RNG) $[4,14,3,15](\beta=2)$, Bose et al. [10] gave a bound which is $\Theta(\sqrt{n})$ and $\Theta(n)$ respectively. Since the spanning ratio increases over β for $\beta \in[1,2]$, the spanning ratio of the beta-skeletons for β for $\beta \in[1,2]$ is at least $\Omega\left(n^{\frac{1}{2}}\right)$ and at most $O(n)$, which is also the best known result till now.

The contribution of this paper is: We first prove that, for $\beta \in[1,2]$, the β-skeletons have spanning ratio at most $(n-1)^{\gamma}$, where $\gamma=1-\frac{1}{2} \log _{2}\left(\mu_{2}+1\right)$, $\mu_{2}=$ $\frac{2-\beta}{\beta}$. We then show that the Gabriel Graph has exact spanning ratio $\sqrt{n-1}$ and the Relative Neighborhood Graph has exact spanning ratio $n-1$. The spanning ratio of β-skeletons for $\beta \in[0,1]$ is at most $(n-1)^{\gamma}$, where $\gamma=\frac{1}{2}-\frac{1}{2} \log _{2}\left(\mu_{1}+1\right)$, $\mu_{1}=\sqrt{1-\beta^{2}}$. Finally, we construct a point set whose β-skeleton, for $\beta \in[0,1]$, has spanning ratio $n^{c_{3}}$, where $c_{3}=\frac{1}{2}-\frac{1}{2} \log _{2}\left(1+\sqrt{\frac{\mu_{1}+1}{2}}\right)$, which improves the previously best known lower bound [12].

2 Upper Bound of Spanning Ratio

Consider a geometry graph $G=(V, E)$ over n points V. For each pair of points (u, v), the length of the shortest path connecting u and v measured by Euclidean distance is denoted by $D_{G}(u, v)$, while the direct Euclidean distance is $\|u v\|$. The spanning ratio (also dilation ratio or length stretch factor) of the graph G is defined by $\psi(G)=\max _{u, v \in G} \frac{D_{G}(u, v)}{\|u v\|}$. If the graph G is not connected, then $\psi(G)$ is infinity, so it is reasonable to focus on connected graphs only.

2.1 Fade Factor of β-skeletons

Our analysis of the upper bound of the spanning ratio of β-skeletons rely on our definition of fade fac-
tor of β-skeletons, which is defined as follows. Given a 2 -dimensional point set S and its β-skeleton $G(\beta)$, choose any pair of points $u, v \in S$. If $u v \notin G(\beta)$, there must exist a point $w \in S$ other than u, v in $N(u, v, \beta)$. We say that the point w breaks edge (u, v) and define $x_{1}=\frac{\|u w\|}{\|u v\|}, x_{2}=\frac{\|v w\|}{\|u v\|}$ as the two fade factors of $u v$ by w. We then study the property of fade factors of β-skeletons, illustrated by Figure 1.

Case 1: $\beta \in[1,2]$. In this case, w must lie in the shaded area $N(u, v, \beta)$. For symmetry, we assume that $\|w u\| \geq\|w v\|,{ }^{2}$ In triangles $\triangle w u p_{1}$ and $\triangle w v p_{1}$, we have $\|u w\|^{2}=\left\|u p_{1}\right\|^{2}+\left\|w p_{1}\right\|^{2}-2\left\|u p_{1}\right\|\left\|w p_{1}\right\| \cos \alpha$ and $\|v w\|^{2}=\left\|v p_{1}\right\|^{2}+\left\|w p_{1}\right\|^{2}-2\left\|v p_{1}\right\|\left\|w p_{1}\right\| \cos (\pi-\alpha)$. Consequently,

$$
\begin{aligned}
& \frac{\|u w\|^{2}-\left\|u p_{1}\right\|^{2}-\left\|w p_{1}\right\|^{2}}{\left\|u p_{1}\right\|}+\frac{\|u w\|^{2}-\left\|v p_{1}\right\|^{2}-\left\|w p_{1}\right\|^{2}}{\left\|v p_{1}\right\|}=0 \\
\Rightarrow \quad & \frac{x_{1}^{2}}{2-\beta}+\frac{x_{2}^{2}}{\beta}=\frac{1}{2}+\frac{\left\|w p_{1}\right\|^{2}}{\|u v\|^{2}} \frac{2}{\beta(2-\beta)} \leq \frac{1}{2-\beta} .
\end{aligned}
$$

Suppose that $0 \leq \mu_{2}=\frac{2-\beta}{\beta} \leq 1$. We have the relation between the fade factors when $\beta \in[1,2]$ and $x_{1} \geq x_{2}$,

$$
\begin{equation*}
x_{1}^{2}+\mu_{2} x_{2}^{2} \leq 1 \tag{1}
\end{equation*}
$$

(a) $\beta \in[1,2]$

(b) $\beta \in[0,1]$

Figure 1: The relations between fade factors of β skeletons.

Case 2. $\beta \in[0,1]$. In this case, we have $1=x_{1}^{2}+$ $x_{2}^{2}-2 x_{1} x_{2} \cos \theta$. Let $\cos \alpha=\sqrt{1-\beta^{2}}$. From $\theta+\alpha \geq \pi$, we have
$1 \geq x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2} \cos (\pi-\alpha)=x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2} \cos \alpha$

2.2 Construction of the fade factor tree

Our analysis of the spanning ratio is based on a concept called fade factor tree, which intuitively records the edge-breaking sequence for a pair of points u and v. The exact definition is given along the following construction algorithm.

Algorithm 1 Constructing the Fade Factor Tree

[^1]1. Construct the root node corresponding to $u v$.
2. If there is no point inside $N(u, v, \beta)$ then stop. Otherwise, assume a point $u_{0} \in N(u, v, \beta)$. We put edge $u u_{0}$ as $u v$'s left child and edge $u_{0} v$ as $u v$'s right child and label these two branches with their fade factor x_{1} and x_{2} respectively. The leaf nodes $u u_{0}, u_{0} v$ form path $u u_{0} v$.
3. If we already have a binary tree with k leaf nodes $p_{0} p_{1}, p_{1} p_{2}, \cdots, p_{k-1} p_{k}$, where $p_{0}=u, v=p_{k}$. Let $S_{1}=\left\{p_{0}, p_{1}, \cdots, p_{k}\right\}$. For every point $p \in S$, we test if p breaks edge $p_{i} p_{i+1}$. We consider five cases here.
(a) If p doesn't break any $p_{i} p_{i+1}$ then continue to try other points in S.
(b) If $p \in S-S_{1}$ and p breaks a single edge $p_{i} p_{i+1}$ then similar to step (2), attach $p_{i} p$ as the left child and $p p_{i+1}$ as the right child of edge $p_{i} p_{i+1}$.
(c) If $p \in S-S_{1}$ and it breaks multiple edges, choose such broken edge $p_{r} p_{r+1}$ with the minimum index r and $p_{s} p_{s+1}$ with the maximum index s. Attach node $p_{r} p$ to node $p_{r} p_{r+1}$ and node $p p_{s+1}$ to node $p_{s} p_{s+1}$ in the tree. Mark all leaf nodes between $p_{r} p$ and $p p_{s+1}$. If all descendant leaf nodes of an internal node have marks, then also mark it. Delete all nodes with marks.
(d) If $p \in S_{1}$, say $p=p_{j}$, and it breaks single edge $p_{i} p_{i+1}$. If $j>i+1$ then attach $p_{i} p_{j}$ to node $p_{i} p_{i+1}$, and mark all leaf nodes $p_{m} p_{m+1}$ for $i+1 \leq m \leq j-1$. If $j<i$ then attach $p_{j} p_{i+1}$ to node $p_{i} p_{i+1}$ and mark all leaf nodes $p_{m} p_{m+1}$ for $j+1 \leq m \leq i$. If all descendant leaf nodes of an internal node have marks, then also mark it. Delete all nodes with mark.
(e) If $p \in S_{1}$, say $p=p_{j}$ and it breaks multiple edges, choose the edge with the minimum index $p_{r} p_{r+1}$ and the maximum index $p_{s} p_{s+1}$. If $j<r$ then attach $p_{j} p_{s+1}$ to $p_{j} p_{j+1}$ and mark all leaf nodes between $p_{j} p_{s+1}$ and $p_{s} p_{s+1}$. If $j>s+1$ then attach $p_{s} p_{j}$ to $p_{s} p_{s+1}$ and mark all leaf nodes between $p_{s} p_{s+1}$ and $p_{j-1} p_{j}$. If $r+1<j<s$ then attach $p_{r} p_{j}$ to $p_{r} p_{r+1}$ and attach $p_{j} p_{s+1}$ to $p_{s} p_{s+1}$, then mark all nodes between $p_{r} p_{r+1}$ and $p_{s} p_{s+1}$. If an internal node's all descendant leaf nodes have marks, then also mark it. Delete all nodes with mark.
4. When there is no updating to the tree, conduct the following reduction process: for every internal node, if it has only one child then remove its only child. Visiting all leaf nodes
from left-to-right, we get a sequence of edges $u E_{0}, B_{1} E_{1}, \cdots, B_{l-1} E_{l-1}, B_{l} v$.

Observation 1 Observations of fade factor tree.

1. For every $0 \leq i \leq l-1$, we have $E_{i}=B_{i+1}$, so the sequence can be written as $u_{0} u_{1}, u_{1} u_{2}, \cdots, u_{l-1} u_{l}$. ($u_{0}=u, u_{l}=v$).
2. $l \leq n-1$, where n is the number of total points in S.
3. $u_{0} u_{1}, u_{1} u_{2}, \cdots, u_{l-1} u_{l}$ corresponds to a simple path connecting u and v in the β-skeleton.

We can show that the above algorithm terminates. For detail of the proof, see the full version of the paper.

2.3 Upper bound when $\beta \in[1,2]$

Previously, Bose et al. [10] gave an upper bound $O(n)$ for β-skeletons when $\beta \in[1,2]$ from the fact that, for a point set S, the β_{1}-skeleton belongs to the β_{2}-skeleton when $\beta_{1} \geq \beta_{2}$. They use the upper bound of the RNG $(\beta=2)$ as upper bound for $\beta \in[1,2]$. We improve it to

$$
U(\beta, n)=(n-1)^{\gamma}
$$

where $\gamma=\max \left\{1-\frac{1}{2} \log _{2}\left(\mu_{2}+1\right), g\left(\mu_{2}\right)\right\}=1-$ $\frac{1}{2} \log _{2}\left(\mu_{2}+1\right), \mu_{2}=\frac{2-\beta}{\beta}$, and $g\left(\mu_{2}\right)$ is the solution to the equation $\left(\mu_{2}^{\frac{1}{g\left(\mu_{2}\right)}}+1\right)^{2 g\left(\mu_{2}\right)}=1+\mu_{2}$ (See appendix about the details of $g\left(\mu_{2}\right)$ and γ).

Before presenting our proof, we list some simple results. If $x_{1} \geq x_{2}$ and subject to the constraint of (1), then for $a, b \geq 0$,

$$
\begin{gather*}
\max _{x_{1}, x_{2}}\left\{a x_{1}+b x_{2}\right\}=\sqrt{a^{2}+b^{2} / \mu_{2}} ; \quad \text { if } b \leq \mu_{2} a \tag{3}\\
\max _{x_{1}, x_{2}}\left\{a x_{1}+b x_{2}\right\}=(b+a) / \sqrt{\mu_{2}+1} ; \quad \text { if } b \geq \mu_{2} a \tag{4}
\end{gather*}
$$

Now we prove our upper bound by induction on n. When $n=3$, there are only three points u, v and w, and suppose that $u v$ is longest edge. If w doesn't break $u v$, then $\psi(G)=1 \leq U(\beta)$. Otherwise, the relation of the fade factors from (1) implies

$$
\psi(G)=x_{1}+x_{2} \leq 2^{1-\frac{1}{2} \log _{2}\left(1+\mu_{2}\right)}=U(\beta, 3)
$$

Suppose for all $k<n$ we have $\psi(G) \leq U(\beta, k)$. Then for $k=n$, we construct the fade factor tree T, and suppose the fade factors of the root are x_{1} and x_{2}. Suppose there are n_{l} leaf nodes in root's left subtree and n_{r} leaf nodes in root's right subtree. Clearly, $n_{l}+n_{r} \leq n-1$ and we have $\psi(G) \leq U\left(\beta, n_{l}+1\right) x_{1}+U\left(\beta, n_{r}+1\right) x_{2}$. By induction, we have $U\left(\beta, n_{l}+1\right) \leq n_{l}^{\gamma}$ and $U\left(\beta, n_{r}+1\right) \leq$ n_{r}^{γ}. We consider two different cases here.

1. If $U\left(\beta, n_{r}+1\right) \geq \mu_{2} U\left(\beta, n_{l}+1\right)$, we have

$$
\begin{aligned}
\psi(G) & \leq\left(U\left(\beta, n_{l}+1\right)+U\left(\beta, n_{r}+1\right)\right) / \sqrt{1+\mu_{2}} \\
& \leq\left(n_{l}+n_{r}\right)^{\gamma} \cdot 2^{1-1+\frac{1}{2} \log _{2}\left(1+\mu_{2}\right)} / \sqrt{1+\mu_{2}} \\
& \leq(n-1)^{\gamma}=U(\beta, n)
\end{aligned}
$$

2. If $U\left(\beta, n_{r}+1\right) \leq \mu_{2} U\left(\beta, n_{l}+1\right)$, we have $\psi(G) \leq$ $\sqrt{U\left(\beta, n_{l}+1\right)^{2}+\frac{1}{\mu_{2}} U\left(\beta, n_{r}+1\right)^{2}}$. Let $f(x)=$ $x^{2 \gamma}+\frac{1}{\mu_{2}}(n-x-1)^{2 \gamma}$. Differentiating $f(x)$, we get $f^{\prime}(x)=2 \gamma\left[x^{2 \gamma-1}-\frac{1}{\mu_{2}}(n-x-1)^{2 \gamma-1}\right]$. Since $1 / 2 \leq \gamma \leq 1, f(x)$ reaches its minimum at point $x_{0}=\frac{n-1}{1+\mu_{2}^{2 \gamma-1}}$, increases when $x \geq x_{0}$, and decreases when $0 \leq x \leq x_{0}$. Notice that $U\left(\beta, n_{r}+1\right) \leq \mu_{2} U\left(\beta, n_{l}+1\right)$, which implies that $x_{l}=\frac{n-1}{\mu_{2}^{(1 / \gamma)}+1} \leq x \leq n-2=x_{r}$. It is easy to show that $\frac{n-1}{1+\mu_{2}^{1 / \gamma}} \leq x_{0}=\frac{n-1}{1+\mu_{2}^{1 /(2 \gamma-1)}}$ when $\gamma \leq 1$ and $\mu_{2} \leq 1$.
Consequently, $U\left(\beta, n_{l}+1\right) x_{1}+U\left(\beta, n_{r}+1\right) x_{2}$ reaches its maximum at point x_{l} or $x_{r}=n-2$. We can show that it reaches the maximum at point x_{l}. Thus,

$$
\psi(G) \leq \sqrt{1+\mu_{2}} \cdot(n-1)^{\gamma} /\left(\mu_{2}^{\frac{1}{\gamma}}+1\right)^{\gamma}
$$

Notice $\left(\mu_{2}^{\frac{1}{\gamma}}+1\right)^{\gamma}$ strictly increases over $[0,1]$ for γ. Thus

$$
\begin{aligned}
\psi(G) & \leq \sqrt{1+\mu_{2}} \cdot(n-1)^{\gamma} /\left(\mu_{2}^{\frac{1}{\gamma}}+1\right)^{\gamma} \\
& \leq \sqrt{1+\mu_{2}} \cdot(n-1)^{\gamma} /\left(\mu_{2}^{\frac{1}{g\left(\mu_{2}\right)}}+1\right)^{g\left(\mu_{2}\right)}=n^{\gamma}
\end{aligned}
$$

The upper bound we proved so far could be a loose bound, and usually the β-skeletons cannot reach this upper bound. But at some extreme cases, we can show that the upper bounds are indeed tight.

When $\beta=1$, the β-skeleton is the Gabriel Graph. Then $\mu_{2}=\frac{2-\beta}{\beta}=1$. It is easy to verify $g(1)=\frac{1}{2}$. Thus,

$$
\gamma=\max \left\{1-\frac{1}{2} \log _{2}(2), \frac{1}{2}\right\}=\frac{1}{2}
$$

In the following section, we construct an example such that GG has spanning ratio $(n-1)^{\frac{1}{2}}$. Consequently, we have

Theorem 1 The spanning ratio of Gabriel Graph is exactly $U(1, n)=(n-1)^{\frac{1}{2}}$.

When $\beta=2$, the β-skeleton becomes the RNG. Notice $\mu_{2}=0$, and it is not possible for $U\left(\beta, n_{r}\right) \leq$ $\mu_{2} U\left(\beta, n_{l}\right)$. Then we have $\gamma=1$. In the following section we review an example in [10] such that RNG has spanning ratio $n-1$. Consequently, we have
Theorem 2 The spanning ratio of Relative Neighborhood Graph is exactly $U(2, n)=n-1$.

2.4 Upper bound when $\beta \in[0,1]$

The fade factors satisfy $x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2} \sqrt{1-\beta^{2}} \leq 1$ when $\beta<1$. Let $\mu_{1}=\sqrt{1-\beta^{2}}$ here. For symmetry, assume that $x_{1} \geq x_{2}$. Thus, $0 \leq x_{2} \leq \sqrt{\frac{1}{2+2 \sqrt{1-\beta^{2}}}}$. If $x_{1} \geq x_{2}$ and subject to the constraint (2), then for $a>0, b>0$,

$$
\begin{gather*}
\max _{x_{1}, x_{2}}\left\{a x_{1}+b x_{2}\right\}=\frac{\sqrt{a^{2}+b^{2}-2 a b \mu_{1}}}{\sqrt{1-\mu_{1}^{2}}} \quad \text { if } b \geq a \mu_{1} \tag{5}\\
\max _{x_{1}, x_{2}}\left\{a x_{1}+b x_{2}\right\}=a \mu_{1} \quad \text { if } b<a \mu_{1} \tag{6}
\end{gather*}
$$

When $\beta \in[0,1]$, we prove that the spanning ratio is at most

$$
U(\beta, n)=(n-1)^{\frac{1-\log _{2}\left(1+\mu_{1}\right)}{2}}
$$

We prove this bound similar to the case $\beta \in[1,2]$. When $k=3$, it is easy to verify the correctness of the bound. Suppose when $k<n$ this bound holds. For $k=n$ we also construct the fade factor tree T, and assume the fade factors of the root are x_{1} and x_{2}. Assume there are n_{l} leaf nodes in root's left subtree and n_{r} leaf nodes in its right subtree, where $n_{l}+n_{r} \leq n-1$. We have $\psi(G) \leq$ $U\left(\beta, n_{l}+1\right) x_{1}+U\left(\beta, n_{r}+1\right) x_{2}$. Let $a=U\left(\beta, n_{l}+1\right)$ and $b=U\left(\beta, n_{r}+1\right)$. We also prove it by cases:

Case 1: $b<a \mu_{1}$. In this case, we have $\psi(G) \leq$ $\mu_{1} U\left(\beta, n_{l}+1\right) \leq U(\beta, n)$.

Case 2: $b \geq a \mu_{1}$. In this case we have $\psi(G) \leq$ $\frac{\sqrt{a^{2}+b^{2}-2 a b \mu_{1}}}{\sqrt{1-\mu_{1}^{2}}}$, and it reaches the maximum when $a=b$. Thus $\psi(G) \leq U\left(\beta, \frac{n+1}{2}\right) \sqrt{\frac{2}{1+\mu_{1}}}=U(\beta, n)$.

3 Lower bound of β-skeletons

3.1 Gabriel Graph $(\beta=1)$

Gabriel Graph is a special case of β-skeletons with $\beta=$ 1. We construct a set of n points whose Gabriel graph has spanning ratio exactly $\sqrt{n-1}$ as follows.

1. Let $A_{1} A_{0}$ be the diameter of a unit circle C_{1}.
2. We then generate a point A_{k} from A_{k-1} and A_{k-2} for $k \geq 2$. Draw a circle C_{k-1} using A_{k-1} and A_{k-2} as diameter, and let $\sin \angle A_{k} A_{k-1} A_{k-2}=$ $\sin \angle \alpha_{k-1}=\frac{1}{\sqrt{n-k+1}}$.

Figure 2 (a) illustrates such construction. We notice that the graph is divided into two parts, all points with the odd index and all points with the even index. It is not difficult to prove the following properties of the constructed point set.

$$
\text { 1. } A_{k} A_{k+2}=\frac{1}{\sqrt{n-1}} \text {, for } 0 \leq k \leq n-2 \text {. }
$$

Figure 2: Point sets that achieve the upper bounds of the spanning ratio.
2. Let $\alpha_{k}=\angle A_{k-1} A_{k} A_{k+1}$. Then $\sin \alpha_{k}=\frac{1}{\sqrt{n-k}}$ and $\angle \alpha_{k} \leq \angle \alpha_{k+1}$. For every $1 \leq k \leq n-2$, $\angle A_{k-2} A_{k} A_{k+2}=\frac{\pi}{2}+\angle \alpha_{k}+\frac{\pi}{2}-\angle \alpha_{k+1}$. Thus, $\angle A_{k-1} A_{k} A_{k+1}<\frac{\pi}{2}$.
3. For every $A_{i} A_{j}$, if $|i-j| \neq 2$ then $A_{i} A_{j}$ is not in the Gabriel Graph. Thus, the Gabriel graph are formed by these edges $A_{i} A_{i+2}, 0 \leq i \leq n-3$, and $A_{n-2} A_{n-1}$.

Obviously, the spanning ratio of this graph is $\frac{D_{G}\left(A_{0} A_{1}\right)}{\left\|A_{0} A_{1}\right\|}=\frac{n-1}{\sqrt{n-1}}=\sqrt{n-1}$.

3.2 Relative Neighborhood Graph $(\beta=2)$

For Relative Neighborhood Graph, the lower bound of the spanning ratio is $n-\epsilon$. We review the example used in [10], illustrated by Figure 2 (b).

Here, $\alpha=60^{\circ}-\delta$ and $\beta=60^{\circ}+2 \delta$. Notice that all triangles are similar. Assume that $\gamma=\frac{\sin \alpha}{\sin \beta}$. Then in triangle $A_{k-1} A_{k} A_{k+1}, 1 \leq k \leq n-1$, we have $A_{k-1} A_{k}=$ $\gamma^{k-1}, A_{k-1} A_{k+1}=A_{k} A_{k+1}=\gamma^{k}$. Thus, $D_{G}\left(A_{0} A_{1}\right)=$ $\gamma^{n-1}+\sum_{i=1}^{n-1} \gamma^{i}$. When γ is sufficiently close to 1 , we have $D_{G}\left(A_{0} A_{1}\right)$ is sufficiently close to $n-1$. Thus, the spanning ratio of the Relative Neighborhood Graph is sufficiently close to $n-1$.

3.3 $1>\beta>0$ case

When $\beta \in[0,1]$, Eppstein [12] presents a fractal construction that provides a non-constant lower bound on the spanning ratio, and his result is summarized below:

Theorem 3 For any $n=5^{k}+1$, there exists a set of n points in the plane whose β-skeleton with $\beta \in(0,1]$ has the spanning ratio $\Omega\left(n^{c}\right)$, where $c=\log _{5} \frac{5}{3+\sqrt{2+2 \mu}}$ and $\mu=\sqrt{1-\beta^{2}}$.

In this paper, we give a different construction that achieves a better lower bound. Suppose that $\alpha=$ $\arccos \left(\sqrt{1-\beta^{2}}\right)$, and $\theta=\pi-\alpha$. Then for any $n=$ $2^{k}+1$, let $P(\beta, k)$ be a path of 2^{k} segment (defined along our construction). Figure 3 illustrates our construction of this β-skeleton for n points, which is described as follows.

1. If $k=1$, construct a triangle $\triangle A B C$ such that $\angle A B C=\angle A C B=\frac{\pi-\theta}{4}$, so $\angle B A C=\frac{\pi+\theta}{2}$. Then $P(\beta, 1)$ is segments $B A C$. Call segment $B C$ the supporting segment of $P(\beta, 1)$.
2. If $k \geq 1$, first construct $P(\beta, 1)=B A C$. Then construct two $P(\beta, k-1)$, scale the supporting segments to length $\|A B\|$, and align their supporting segments to $A B$ and $B C$ respectively. Notice there are two possible ways to place $P(\beta, k-1)$, we should choose the way such that $P(\beta, k-1)$ lies inside the triangle $\triangle A B C$.

Figure 3: Constructing the β-skeleton with large spanning ratio for $\beta \in[0,1]$.

Lemma 1 If $\angle B A C \geq \frac{\pi+\theta}{2}$, then $P(\beta, k)$ is a β skeleton of its points, where $\theta=\pi-\arccos \left(\sqrt{1-\beta^{2}}\right)$.

Proof. In order to show that $P(\beta, k)$ is a β-skeleton, we prove that for any pair of no-adjacent points u and v, they do not belong to the β-skeleton. Obviously there must exist some $i<k$ such that u and v belong to the different copy of adjacent $P(\beta, i)$, assume that A is the common point of these two copies, then $\angle u A v \geq \angle D A E=\frac{\pi+\theta}{2}-2 \cdot \frac{\pi-\theta}{4}=\theta$, which finishes our proof. Notice that the β-skeleton is still a connected graph. Thus, all line segments constructed belong to β-skeleton.

Obviously, if the two end points are normalized to 1 , the spanning ratio is the total length of segments in $P(\beta, k)$.

Theorem 4 For any $\beta \in[0,1]$, there exists a β skeleton of $n=2^{k}+1$ points such that its spanning ratio is $\Omega\left((n-1)^{\frac{1}{2}-\frac{1}{2} \log _{2}\left(1+\sqrt{\frac{\mu_{1}+1}{2}}\right)}\right)$, where $\mu_{1}=\sqrt{1-\beta^{2}}$.

Table 1: Lower and upper bounds for spanning ratio of β-skeletons. Here the constants used are $c_{1}=1-$ $\log _{5}\left(3+\sqrt{2+2 \mu_{1}}\right), c_{2}=\frac{1}{2}-\frac{1}{2} \log _{2}\left(1+\mu_{1}\right), c_{3}=\frac{1}{2}-$ $\frac{1}{2} \log _{2}\left(1+\sqrt{\frac{\mu_{1}+1}{2}}\right)$, and $c_{4}=1-\frac{1}{2} \log _{2}\left(\mu_{2}+1\right)$. And $\mu_{1}=\sqrt{1-\beta^{2}}$ and $\mu_{2}=(2-\beta) / \beta$.

	$\beta \in(0,1)$	$\beta=1$	$\beta \in(1,2)$	$\beta=2$
OldLower	$\Omega\left(n^{c_{1}}\right)$	$\Omega(\sqrt{n})$	$\Omega(\sqrt{n})$	$\Omega(n)$
OldUpper	$O\left(n^{c_{2}}\right)$	$O(\sqrt{n})$	$O(n)$	$O(n)$
OurLower	$\Omega\left(n^{c_{3}}\right)$	$\sqrt{n-1}$	$\Omega(\sqrt{n})$	$n-1$
OurUpper	$O\left(n^{c_{2}}\right)$	$\sqrt{n-1}$	$O\left(n^{c_{4}}\right)$	$n-1$

This theorem can be enhanced such that we can construct examples for any integer n, but with a small constant degradation of the spanning ratio. For Gabriel Graph, from previous result by Eppstein [12], we get a spanning ratio of $\Omega\left(n^{c}\right)$ for $0.077<c<0.078$, and applying Theorem 4 , we get a spanning ratio of $\Omega\left(n^{c_{2}}\right)$ for $0.114<c_{2}<0.115$, which is bigger than previous lower bound, but is still much smaller than the tight bound $\Theta\left(n^{\frac{1}{2}}\right)$. In general, for $\beta \in[0,1]$, our lower bound is always better than the previous one, which is discussed in the full version of the paper.

4 Conclusion

We studied the spanning ratio of β-skeletons with $\beta \in$ $[0,2]$. This class of proximity graphs includes the Gabriel graph and the Relative Neighborhood Graph. Table 1 summarizes our results compared with the previously best known results. For $\beta>2, \beta$-skeletons are not guaranteed to be connected. Thus, the spanning ratio leaps to infinity.
Several open problems remain for investigation. It would be interesting to close the gap between our lower bound and the upper bound for $\beta \in(0,1)$ and $\beta \in(1,2)$. We conjecture that our lower bound for $\beta \in(0,1)$ is already tight.

References

[1] K.R. Gabriel and R.R. Sokal, "A new statistical approach to geographic variation analysis," Systematic Zoology, vol. 18, pp. 259-278, 1969.
[2] J. M. Keil and C. A. Gutwin, "Classes of graphs which approximate the complete euclidean graph," Discrete Compt. Geom., vol. 7, 1992.
[3] K. J. Supowit, "The relative neighborhood graph, with an application to minimum spanning trees," Journal of ACM, no. 30, 1983.
[4] Godfried T. Toussaint, "The relative neighborhood graph of a finite planar set," Pattern Recognition, vol. 12, no. 4, pp. 261-268, 1980.
[5] Siu-Wing Cheng and Yin-Feng Xu, "On beta-skeleton as a subgraph of the minimum weight triangulation,"

Theoretical Computer Science, vol. 262, no. 1, pp. 459471, 2001.
[6] P.L. Chew, "There is a planar graph as good as the complete graph," in Proc. of the 2nd Symp. on Compt. Geometry, 1986, pp. 169-177.
[7] D.P. Dobkin, S.J. Friedman, and K.J. Supowit, "Delaunay graphs are almost as good as complete graphs," Discrete Compt. Geometry, 1990.
[8] N. Amenta, M. Bern, and D. Eppstein, "The crust and the β-skeleton: Combinatorial curve reconstruction," Graphical models and image processing: GMIP, vol. 60, no. 2, pp. 125-135, 1998.
[9] F. P. Preparata and M. I. Shamos, Computational Geometry: an Introduction, Springer-Verlag, 1985.
[10] P. Bose, L. Devroye, W. Evans, and D. Kirkpatrick, "On the spanning ratio of gabriel graphs and betaskeletons," in Proceedings of the Latin American Theoretical Infocomatics (LATIN), 2002.
[11] Xiang-Yang Li, Peng-Jun Wan, and Yu Wang, "Power efficient and sparse spanner for wireless ad hoc networks," in IEEE ICCCN, 2001.
[12] David Eppstein, "Beta-skeletons have unbounded dilation," Tech. Rep. ICS-TR-96-15, University of California, Irvine, 1996.
[13] D. W. Matula and R. R. Sokal, "Properties of gabriel graphs relevant to geographical variation research and the clustering of points in the plane," Geographical Analysis, , no. 12, pp. 205-222, 1984.
[14] J. Katajainen, "The region approach for computing relative neighborhood graphs in the lp metric," Computing, vol. 40, pp. 147-161, 1988.
[15] J.W. Jaromczyk and G.T. Toussaint, "Relative neighborhood graphs and their relatives," Proceedings of IEEE, vol. 80, no. 9, pp. 1502-1517, 1992.

5 Appendix

In subsection 2.3, we show that the β-skeletons, $\beta \in$ [1,2], have spanning ratio at most $(n-1)^{\gamma}$, where $\gamma=$ $\max \left\{1-\frac{1}{2} \log _{2}\left(\mu_{2}+1\right), g\left(\mu_{2}\right)\right\}, \mu_{2}=(2-\beta) / \beta \in(0,1]$. We then show that $1-\frac{1}{2} \log _{2}\left(\mu_{2}+1\right) \geq g\left(\mu_{2}\right)$.

Let $f(x)=\left(\mu_{2}^{1 / x}+1\right)^{2 x}$. For any $\mu_{2} \in[0,1]$, it is easy to verify that both $\mu_{2}^{1 / x}+1$ and $a^{2 x}(a \geq 1)$ are increasing on $[0,1]$, here a is a fixed constant. Thus, $f(x)$ increases over $[0,1]$. With $f(0)=1 \leq 1+\mu_{2}$ and $f(1)=\left(1+\mu_{2}\right)^{2} \geq 1+\mu_{2}$, the equation $\left(\mu_{2}^{\frac{1}{g\left(\mu_{2}\right)}}+\right.$ $1)^{2 g\left(\mu_{2}\right)}=1+\mu_{2}$ has exactly one solution $g\left(\mu_{2}\right)$ over $[0,1]$. In fact, any solution to the inequality below is an upper bound $\left(\mu_{2}^{\frac{1}{g\left(\mu_{2}\right)}}+1\right)^{2 g\left(\mu_{2}\right)} \geq 1+\mu_{2}$.

Now we compare the the value of $1-\frac{1}{2} \log _{2}\left(\mu_{2}+1\right)$ and $g\left(\mu_{2}\right)$, which is equivalent to compare the value of $f\left(\mu_{2}\right)=\left(\mu_{2}^{\frac{1}{1-\frac{1}{2} \log _{2}\left(1+\mu_{2}\right)}}+1\right)^{2-\log _{2}\left(1+\mu_{2}\right)}$ and $1+\mu_{2}$ for $\mu_{2} \in[0,1]$. Figure $4(\mathrm{a})$ shows that $f\left(\mu_{2}\right) \geq 1+\mu_{2}$,
which means for $\mu_{2} \in[0,1] \gamma=\max \left\{1-\frac{1}{2} \log _{2}\left(\mu_{2}+\right.\right.$ 1), $\left.g\left(\mu_{2}\right)\right\}=1-\frac{1}{2} \log _{2}\left(\mu_{2}+1\right)$. See full version of the paper for arithmetic proof.

(a) $g\left(\mu_{2}\right)$ is unnecessary

(b) lower bounds for $\beta \in[0,1]$.

Figure 4: (a) The upper bound for $\beta \in[1,2]$ can be simplified. (b) Our lower bound for $\beta \in[0,1]$ is strictly better than previous result.

[^0]: *Department of Computer Science, Illinois Institute of Technology, Chicago, IL. Email \{wangwei4, wangyu1, moavkoo, songwen\}@iit.edu, xli@cs.iit.edu.
 ${ }^{1}$ There are two possible interpretations of the interior: one includes the boundary which is called Closed Neighbor and the other excludes the boundary which is called Open Neighbor. We always consider closed neighbor here.

[^1]: ${ }^{2}$ This assumption implies that $\left\|w p_{2}\right\| \leq\left\|w p_{1}\right\| \leq\|u v\|$ and $x_{1} \geq x_{2}$.

