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Hinged Dissection of Polygons is Hard
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Abstract

We show several natural questions about hinged dissec-
tions of polygons to be PSPACE-hard. The most basic
of these is: Given a hinged set of pieces and two con-
figurations for them, can we swing the pieces on the
hinges to transform one configuration to the other? We
also consider variants in which the configurations must
be convex, the placement of hinges is not specified, or
the configurations are not supplied, but just the target
shapes. We show all of these variants to be PSPACE-
hard, via a reduction from Nondeterministic Constraint
Logic [4].

1 Introduction

Geometric dissection problems have a long, colorful his-
tory, reaching back to the ancient Greeks and to the
golden age of Islamic civilization. Approximately a cen-
tury ago, Henry Dudeney and Sam Loyd championed
them in mathematical puzzle columns, and they have
enjoyed increasing popularity ever since [2].

It was Dudeney who pointed out that the 4-piece dis-
section of an equilateral triangle to a square is hingeable.
(See Fig. 1.) Over the years, other hinged dissections
have been noted [2], and recently a whole book on the
subject has appeared [3]. In contrast to the situation for
unhinged dissections, it is not known whether for any
given polygons of equal area, there is a hinged dissec-
tion. Even when given a dissection and an associated
assignment of hinges, testing whether there is a contin-
uous motion transforming the one polygon to the other
seems to be difficult. This paper confirms this notion of
hardness, showing that this associated motion planning
problem and the other variants are PSPACE-hard.

Figure 1: Hinged triangle-to-square dissection.
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Terminology. We define a piece as an instance of a
polygon. A dissection is a set of pieces. A configura-
tion is an embedding of a dissection in the plane, such
that only the boundaries of pieces may overlap. The
shape of a configuration is the set of points, including
the boundaries of pieces, that it occupies.

A hinge point of a piece is a given point on the bound-
ary of the piece. A hinge for a set of pieces is a set
of hinge points, one for each piece in the set. Given
a dissection and a set of hinges, two pieces are hinge-
connected if either they share a hinge or there is another
piece in the set to which both are hinge-connected. A
hinging of a dissection is a set of hinges such that all
pieces in the dissection are hinge-connected.

A hinged configuration of a dissection and a hing-
ing is a configuration that, for each hinge, collocates all
hinge points of that hinge. A kinematic solution of a
dissection, a hinging, and two hinged configurations is
a continuous path from one configuration to the other
through the space of hinged configurations.

Nondeterministic Constraint Logic. We show that
our hinged-dissection problems are PSPACE-hard by
a reduction from Nondeterministic Constraint Logic
(NCL) [4].

An NCL “machine” is specified by a constraint graph:
an undirected planar graph together with an assignment
of weights from {1, 2} to each edge. A configuration of
this machine is an orientation (direction) of the edges
such that the sum of incoming edge weights at each
vertex is at least 2. A move is made by reversing a
single edge such that the configuration remains valid.

The following decision questions are PSPACE-
complete: (1) starting from a specified configuration,
can another specified configuration be reached by a se-
quence of moves (“configuration to configuration”), and
(2) given edges EA and EB with desired orientations, do
there exist configurations A, with EA in its desired ori-
entation, and B, with EB in its desired orientation, such
that B can be reached from A (“edge to edge”).

In fact, only two types of vertices are necessary
for PSPACE-completeness to hold: those with inci-
dent edge weights of 1-1-2 (“And”) and 2-2-2 (“Or”).
These vertex types have properties similar to the logi-
cal operations of the same name. For example, for the
weight-2 edge to be directed away from an And vertex,
both of the weight-1 edges must be directed inward.
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2 PSPACE-hardness

We begin with the most basic decision question: given
a dissection, a hinging, and two hinged configurations,
does there exist a kinematic solution? After showing
this problem to be PSPACE-hard, we generalize the re-
sult to apply to the other questions as well.

2.1 Basic Construction

We show how to form NCL And and Or vertices
from partial configurations, which can be assembled to
form hinged configurations corresponding to given NCL
graph configurations.

(a) And vertex (b) Or vertex

Figure 2: NCL vertex gadgets.

Vertex gadgets. Fig. 2 shows the vertex gadgets.
Each gadget is made of several pieces. The pieces are
joined together by hinges; each sliding connection in
Fig. 2 is shorthand for a hinged connection as shown in
Fig. 3.

Figure 3: Hinged slider.

In each vertex gadget, a sliding piece slid into the
gadget (A and B) represents an edge directed outward
from the vertex; a piece protruding from the gadget (C)
represents an edge directed into the vertex.

Planar graph configurations. We combine the vertex
gadgets into a configuration corresponding to a given
NCL graph. We simply tile a square grid with the gad-
gets as needed, joining adjacent framework pieces to-
gether. The resulting construction goes inside a single
hollow square piece, to ground the framework and keep
the framework pieces from moving.

Lemma 1 The partial configuration in Fig. 2(a) satis-
fies the same constraints as an NCL And vertex.

Proof sketch: Piece C can slide into the gadget if and
only if pieces A and B first slide out. This corresponds
to the edge redirection constraints in an And vertex:
the weight-2 edge can be directed out if and only if both
weight-1 edges are directed in. �

Lemma 2 The partial configuration in Fig. 2(b) satis-
fies the same constraints as an NCL Or vertex.

Theorem 3 Given a dissection, a hinging, and two
hinged configurations, determining whether there is a
kinematic solution is PSPACE-hard.

Proof: Given source and target NCL configurations, we
form corresponding hinged configurations, as described
above. Each vertex gadget edge piece corresponds to
half an edge in the graph; for a half edge to be slid
outward from a vertex gadget, its matching half edge
must be slid into its own gadget. This property ensures
that a kinematic solution exists if and only if the target
NCL configuration is reachable from the source. �

2.2 No Hinging is Given

Theorem 4 The following question is PSPACE-hard:
Given a dissection and two of its configurations, do a
hinging and a kinematic solution exist?

Proof: We use the construction in Sec. 2.1, without
the hinges. The construction gains no essential freedom
of motion if no hinges are specified. Therefore, if a
solution to the NCL problem exists, the original hinging
suffices; if no NCL solution exists, no hinging will yield
a kinematic solution. �

2.3 Convex Configuration Shapes

If the source and target configuration shapes are re-
quired to be convex, does the problem get easier? No,
as we show in stages.

We begin by eliminating the internal holes from the
configuration described in Sec. 2.1. We introduce gaps
between all the pieces that are not directly joined by
hinges, and also introduce a tree of gaps along vertex
boundaries, to reach all the vertex entrances. We con-
nect the resulting single empty space to the exterior of
the enclosing square via a narrow tunnel.We can easily
make the gaps small enough not to affect the vertex be-
havior. We introduce the gaps in such a way as to cause
the empty space to form a polyomino-shaped hole. If
we can find a single hinged dissection which can kine-
matically fill any m-omino-shaped hole, for fixed m, we
can make the configuration shapes convex.
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A hinged dissection which can form any m-omino ap-
pears in [1]; this construction will not suffice, however,
for kinematically filling and emptying holes. We intro-
duce a dissection which solves this problem.

First, we give a dissection (isosceles dissection #1)
permitting a right isosceles triangle to be flipped, while
holding the vertices at its acute angles (Fig. 4). Us-
ing isosceles dissection #1 four times, we next form a
dissection (isosceles dissection #2) permitting a right
isosceles triangle to be flipped while holding the other
possible vertex pair (Fig. 5). Using isosceles dissection
#2 twice, we form a dissection (universal isosceles dis-
section) among all six possible orientations of a right
isosceles triangle, holding any two vertices (Fig. 6).

Figure 4: Isosceles dissection #1.

Figure 5: Isosceles dissection #2.

Figure 6: Universal isosceles dissection.

We use all these dissections to fill polyomino-shaped
holes. Using strings of eight universal isosceles dissec-
tions, we form the patterns descent, turn 1, and turn 2
(Fig. 7). We can form a square in two different ways
(Fig. 8). Each square may be unfolded by pulling the
triangle strings out from above, without them occupying
any space otherwise adjacent to the square. After the
string has been extracted, in Fig. 8(a) (straight) the tail
of the string touches the bottom center of the square;
in Fig. 8(b) (turn) the tail touches the right center.

Figure 7: Descent, turn 1, turn 2: folded, straight

(a) Straight (b) Turn

Figure 8: Hole-filling primitives.

By choosing a suitable string of the primitive pat-
terns, we can form any sequence of straight and turn
squares. We then use this string to fill a polyomino-
shaped hole (Fig. 9). Imagine that the tail of the string
is at B, attached to the surrounding piece framework.
If the hole is filled in by the dissection, we may extract
it completely from the surrounding shape by pulling out
one square at a time, as described above, beginning at

3



15th Canadian Conference on Computational Geometry, 2003

Figure 9: How to fill a polyomino-shaped hole.

A. Reversing this procedure fills the hole.
Since we have used universal isosceles dissections to

form the triangles in Fig. 7, we can reconfigure the hole-
filling string, while extracted from the shape, to form
any other hole-filling string: we can switch between de-
scent, turn 1, and turn 2, or reflected versions of the
turns, for each segment. This lets a single string fill any
m-omino-shaped hole, for fixed m.

Theorem 5 Theorem 3 holds even when the configura-
tions are required to form convex shapes.

Proof: Proof omitted in this abstract. �

2.4 The Configurations are not Given

For Theorems 3 and 5 we are given two configurations
of a dissection, and the problem is to find a kinematic
solution between them. What if the configurations
are unspecified, and instead we are given merely the
shapes that the configurations must form? For exam-
ple, for Dudeney’s triangle-to-square dissection (Fig. 1),
we might be given the set of pieces and hinges, and the
triangle and square shapes, and asked whether there
are any hinged configurations yielding the shapes, such
that a kinematic solution exists between them. In this
section we show that these problems are also PSPACE-
hard, even when the shapes are rectangles.

Forced configuration properties. First note that the
dissection and hinging given in Sec. 2.1 force all hinged
configurations to correspond to the same NCL machine,
but with different NCL configurations, depending on the
slider positions. The chain of squares in Fig. 3 forces
each pair of slider pieces to mate properly; the left-right
asymmetry in the slider ensures that a flipped configu-
ration is not possible.

Rectangle-to-rectangle construction. We extend the
original construction with extra pieces, as shown in
Fig. 10. The original square construction is embedded
in this construction as block M . We use the edge-to-
edge NCL decision problem, and arrange for piece A to
be able to slide into M only when one input edge is in
its desired orientation, and for piece B to be able to

Figure 10: Rectangle-to-rectangle construction.

slide into M only when the other input edge is in its
desired orientation. (A and B are both connected to
the framework pieces with hinged sliders.)

As in Sec. 2.3, we fill the empty space in M with
a universal m-omino dissection. We increase m by a
sufficient amount to include the space marked “filler”
in the figure.

Based on the positions of A and B, the configuration
can form one of the two rectangular shapes, as required.

Theorem 6 Given a dissection, a hinging, and two
rectangles, determining whether there are hinged con-
figurations admitting a kinematic solution is PSPACE-
hard.

Proof: Proof omitted in this abstract. �

3 Conclusion

Our results can be characterized according to four di-
mensions:

1. whether the hinging is given, or it is free to be
chosen;

2. whether the source and target are specified as con-
figurations, or as shapes;

3. whether the source and target shapes are rectan-
gles, convex polygons, or general polygons; and

4. whether the pieces are restricted to be convex.

When the hinging is given (1), our theorems apply no
matter how the source and target are specified (2) and
even when the shapes are rectangles (3) and the pieces
are convex (4) (convex piece discussion omitted from
this abstract). However, when the hinging is free (1),
our theorems apply only when the source and target
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are specified as configurations (2) and the shapes are
general polygons (3), although the pieces may be convex
(4). The remaining problems in this 4D space are open,
and it seems difficult to adapt our reduction to handle
them.
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